Mamatha Rani, Pratheepa Velumani, Jaganmohan Rangarajan, Vincent Hema, Vidyalakshmi Rajagopal
{"title":"芒果(Mangifera indica L)变种 Banganapalli:原位干预对叶酸浓度及其理化性质变化的影响","authors":"Mamatha Rani, Pratheepa Velumani, Jaganmohan Rangarajan, Vincent Hema, Vidyalakshmi Rajagopal","doi":"10.24294/th.v7i1.3485","DOIUrl":null,"url":null,"abstract":"Fruits are a source of vitamins. Mango is one of the abundantly nutritional fruits. Vitamin B9, or folic acid, is one of the important vital amines due to its role in preventing neural deficiency. Several beneficial micro-organisms are used for the synthesis of folic acid. In this study, Lactobacillus acidophilus, Leuconostoc mesenteroides, Streptococcus thermophilus, and Saccharomyces cerevisiae were used. Saccharomyces cerevisiae synthesized folic acid as compared to other organisms. There were five different concentrations of mango pulp that were analyzed for folic acid synthesis (5%, 10%, 15%, 20%, and 30%). The initial concentration of pulp was 133.37 mg kg−1, but after fermentation with four micro-organisms it got reduced. As compared to the other three organisms, Saccharomyces cerevisiae synthesizes 17.15 mg kg−1, 30.14 mg kg−1, 28.62 mg kg−1, 21.70 mg kg−1, and 21.78 mg kg−1, respectively, at different pulp concentrations of 5%, 10%, 15, 20%, and 30%. Vitamin C increased to 320 mg as compared to the control, and there was no significant difference between the four micro-organisms. Antioxidants also showed positive results at different concentrations of pulp. There was an increase in titratable acidity and a decrease in pH recorded for the 24 h fermentation period. In this variety, the color of mango pulp slightly changes to yellow shades due to the breakdown of pigments, so this effects the *b value in between the pulp concentrations. Data supports the enrichment of folic acid, which will further support the utilization of beneficial micro-organisms in food beverages. ","PeriodicalId":507088,"journal":{"name":"Trends in Horticulture","volume":"3 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mango (Mangifera indica L) var Banganapalli: Impact of in-situ intervention on folic acid concentration and its changes in physicochemical property\",\"authors\":\"Mamatha Rani, Pratheepa Velumani, Jaganmohan Rangarajan, Vincent Hema, Vidyalakshmi Rajagopal\",\"doi\":\"10.24294/th.v7i1.3485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fruits are a source of vitamins. Mango is one of the abundantly nutritional fruits. Vitamin B9, or folic acid, is one of the important vital amines due to its role in preventing neural deficiency. Several beneficial micro-organisms are used for the synthesis of folic acid. In this study, Lactobacillus acidophilus, Leuconostoc mesenteroides, Streptococcus thermophilus, and Saccharomyces cerevisiae were used. Saccharomyces cerevisiae synthesized folic acid as compared to other organisms. There were five different concentrations of mango pulp that were analyzed for folic acid synthesis (5%, 10%, 15%, 20%, and 30%). The initial concentration of pulp was 133.37 mg kg−1, but after fermentation with four micro-organisms it got reduced. As compared to the other three organisms, Saccharomyces cerevisiae synthesizes 17.15 mg kg−1, 30.14 mg kg−1, 28.62 mg kg−1, 21.70 mg kg−1, and 21.78 mg kg−1, respectively, at different pulp concentrations of 5%, 10%, 15, 20%, and 30%. Vitamin C increased to 320 mg as compared to the control, and there was no significant difference between the four micro-organisms. Antioxidants also showed positive results at different concentrations of pulp. There was an increase in titratable acidity and a decrease in pH recorded for the 24 h fermentation period. In this variety, the color of mango pulp slightly changes to yellow shades due to the breakdown of pigments, so this effects the *b value in between the pulp concentrations. Data supports the enrichment of folic acid, which will further support the utilization of beneficial micro-organisms in food beverages. \",\"PeriodicalId\":507088,\"journal\":{\"name\":\"Trends in Horticulture\",\"volume\":\"3 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Horticulture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24294/th.v7i1.3485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24294/th.v7i1.3485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mango (Mangifera indica L) var Banganapalli: Impact of in-situ intervention on folic acid concentration and its changes in physicochemical property
Fruits are a source of vitamins. Mango is one of the abundantly nutritional fruits. Vitamin B9, or folic acid, is one of the important vital amines due to its role in preventing neural deficiency. Several beneficial micro-organisms are used for the synthesis of folic acid. In this study, Lactobacillus acidophilus, Leuconostoc mesenteroides, Streptococcus thermophilus, and Saccharomyces cerevisiae were used. Saccharomyces cerevisiae synthesized folic acid as compared to other organisms. There were five different concentrations of mango pulp that were analyzed for folic acid synthesis (5%, 10%, 15%, 20%, and 30%). The initial concentration of pulp was 133.37 mg kg−1, but after fermentation with four micro-organisms it got reduced. As compared to the other three organisms, Saccharomyces cerevisiae synthesizes 17.15 mg kg−1, 30.14 mg kg−1, 28.62 mg kg−1, 21.70 mg kg−1, and 21.78 mg kg−1, respectively, at different pulp concentrations of 5%, 10%, 15, 20%, and 30%. Vitamin C increased to 320 mg as compared to the control, and there was no significant difference between the four micro-organisms. Antioxidants also showed positive results at different concentrations of pulp. There was an increase in titratable acidity and a decrease in pH recorded for the 24 h fermentation period. In this variety, the color of mango pulp slightly changes to yellow shades due to the breakdown of pigments, so this effects the *b value in between the pulp concentrations. Data supports the enrichment of folic acid, which will further support the utilization of beneficial micro-organisms in food beverages.