生物通气的三维模型:数学求解、校准和验证

Mohammad Khodabakhshi Soureshjani, Hermann J. Eberl, R. Zytner
{"title":"生物通气的三维模型:数学求解、校准和验证","authors":"Mohammad Khodabakhshi Soureshjani, Hermann J. Eberl, R. Zytner","doi":"10.3390/mca29010016","DOIUrl":null,"url":null,"abstract":"Bioventing is an established technique extensively employed in the remediation of soil contaminated with petroleum hydrocarbons. In this study, the objective was to develop an improved foundational bioventing model that characterizes gas flow in vadose zones where aqueous and non-aqueous phase liquid (NAPL) are present and immobile, accounting for interphase mass transfer and first order biodegradation kinetics. By incorporating a correlation for the biodegradation rate constant, which is a function of soil properties including initial population of petroleum degrader microorganisms in soil, sand content, clay content, water content, and soil organic matter content, this model offers the ability to integrate a specific biodegradation rate constant tailored to the soil properties for each site. The governing equations were solved using the finite volume method in OpenFOAM employing the “porousMultiphaseFoam v2107” (PMF) toolbox. The equation describing gas flow in unsaturated soil was solved using a mixed pressure-saturation method, where calculated values were employed to solve the component transport equations. Calibration was done against a set of experimental data for a meso-scale reactor considering contaminant volatilization rate as the pre-calibration parameter and the mass transfer coefficient between aqueous and NAPL phase as the main calibration parameter. The calibrated model then was validated by simulating a large-scale reactor. The modelling results showed an error of 2.9% for calibrated case and 4.7% error for validation case which present the fitness to the experimental data, proving that the enhanced bioventing model holds the potential to improve predictions of bioventing and facilitate the development of efficient strategies to remediate soil contaminated with petroleum hydrocarbons.","PeriodicalId":352525,"journal":{"name":"Mathematical and Computational Applications","volume":"8 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Dimensional Model for Bioventing: Mathematical Solution, Calibration and Validation\",\"authors\":\"Mohammad Khodabakhshi Soureshjani, Hermann J. Eberl, R. Zytner\",\"doi\":\"10.3390/mca29010016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bioventing is an established technique extensively employed in the remediation of soil contaminated with petroleum hydrocarbons. In this study, the objective was to develop an improved foundational bioventing model that characterizes gas flow in vadose zones where aqueous and non-aqueous phase liquid (NAPL) are present and immobile, accounting for interphase mass transfer and first order biodegradation kinetics. By incorporating a correlation for the biodegradation rate constant, which is a function of soil properties including initial population of petroleum degrader microorganisms in soil, sand content, clay content, water content, and soil organic matter content, this model offers the ability to integrate a specific biodegradation rate constant tailored to the soil properties for each site. The governing equations were solved using the finite volume method in OpenFOAM employing the “porousMultiphaseFoam v2107” (PMF) toolbox. The equation describing gas flow in unsaturated soil was solved using a mixed pressure-saturation method, where calculated values were employed to solve the component transport equations. Calibration was done against a set of experimental data for a meso-scale reactor considering contaminant volatilization rate as the pre-calibration parameter and the mass transfer coefficient between aqueous and NAPL phase as the main calibration parameter. The calibrated model then was validated by simulating a large-scale reactor. The modelling results showed an error of 2.9% for calibrated case and 4.7% error for validation case which present the fitness to the experimental data, proving that the enhanced bioventing model holds the potential to improve predictions of bioventing and facilitate the development of efficient strategies to remediate soil contaminated with petroleum hydrocarbons.\",\"PeriodicalId\":352525,\"journal\":{\"name\":\"Mathematical and Computational Applications\",\"volume\":\"8 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical and Computational Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mca29010016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca29010016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物通风是一项成熟的技术,广泛应用于受石油烃污染土壤的修复。本研究的目标是开发一种改进的基础生物通风模型,用于描述存在水相和非水相液体(NAPL)且不流动的渗流区的气体流动情况,同时考虑相间传质和一阶生物降解动力学。生物降解速率常数是土壤特性(包括土壤中石油降解微生物的初始数量、含沙量、粘土含量、含水量和土壤有机物含量)的函数,通过将生物降解速率常数与土壤特性相关联,该模型能够根据每个地点的土壤特性整合特定的生物降解速率常数。利用 OpenFOAM 中的有限体积法,并使用 "porousMultiphaseFoam v2107"(PMF)工具箱,对治理方程进行了求解。描述非饱和土壤中气体流动的方程采用混合压力-饱和度法求解,计算值用于求解组分传输方程。根据中尺度反应器的一组实验数据进行了校准,将污染物挥发率作为预校准参数,将水相和 NAPL 相之间的传质系数作为主要校准参数。然后通过模拟大型反应器对校准模型进行验证。建模结果表明,校准情况下的误差为 2.9%,验证情况下的误差为 4.7%,与实验数据相吻合,证明增强型生物通风模型具有改进生物通风预测的潜力,有助于制定有效的策略来修复受石油烃污染的土壤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-Dimensional Model for Bioventing: Mathematical Solution, Calibration and Validation
Bioventing is an established technique extensively employed in the remediation of soil contaminated with petroleum hydrocarbons. In this study, the objective was to develop an improved foundational bioventing model that characterizes gas flow in vadose zones where aqueous and non-aqueous phase liquid (NAPL) are present and immobile, accounting for interphase mass transfer and first order biodegradation kinetics. By incorporating a correlation for the biodegradation rate constant, which is a function of soil properties including initial population of petroleum degrader microorganisms in soil, sand content, clay content, water content, and soil organic matter content, this model offers the ability to integrate a specific biodegradation rate constant tailored to the soil properties for each site. The governing equations were solved using the finite volume method in OpenFOAM employing the “porousMultiphaseFoam v2107” (PMF) toolbox. The equation describing gas flow in unsaturated soil was solved using a mixed pressure-saturation method, where calculated values were employed to solve the component transport equations. Calibration was done against a set of experimental data for a meso-scale reactor considering contaminant volatilization rate as the pre-calibration parameter and the mass transfer coefficient between aqueous and NAPL phase as the main calibration parameter. The calibrated model then was validated by simulating a large-scale reactor. The modelling results showed an error of 2.9% for calibrated case and 4.7% error for validation case which present the fitness to the experimental data, proving that the enhanced bioventing model holds the potential to improve predictions of bioventing and facilitate the development of efficient strategies to remediate soil contaminated with petroleum hydrocarbons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信