基于无人机的间作仙人掌分类:在灌溉区使用机器学习对 RGB 和多光谱样本空间进行比较

Oto Barbosa de Andrade, A. Montenegro, Moisés Alves da Silva Neto, L. D. B. D. Sousa, T. Almeida, João L. M. P. de de Lima, Ailton Alves de Carvalho, Marcos Vinícius da Silva, Victor Wanderley Costa de Medeiros, Rodrigo Gabriel Ferreira Soares, T. G. F. Silva, B. P. Vilar
{"title":"基于无人机的间作仙人掌分类:在灌溉区使用机器学习对 RGB 和多光谱样本空间进行比较","authors":"Oto Barbosa de Andrade, A. Montenegro, Moisés Alves da Silva Neto, L. D. B. D. Sousa, T. Almeida, João L. M. P. de de Lima, Ailton Alves de Carvalho, Marcos Vinícius da Silva, Victor Wanderley Costa de Medeiros, Rodrigo Gabriel Ferreira Soares, T. G. F. Silva, B. P. Vilar","doi":"10.3390/agriengineering6010031","DOIUrl":null,"url":null,"abstract":"Precision agriculture requires accurate methods for classifying crops and soil cover in agricultural production areas. The study aims to evaluate three machine learning-based classifiers to identify intercropped forage cactus cultivation in irrigated areas using Unmanned Aerial Vehicles (UAV). It conducted a comparative analysis between multispectral and visible Red-Green-Blue (RGB) sampling, followed by the efficiency analysis of Gaussian Mixture Model (GMM), K-Nearest Neighbors (KNN), and Random Forest (RF) algorithms. The classification targets included exposed soil, mulching soil cover, developed and undeveloped forage cactus, moringa, and gliricidia in the Brazilian semiarid. The results indicated that the KNN and RF algorithms outperformed other methods, showing no significant differences according to the kappa index for both Multispectral and RGB sample spaces. In contrast, the GMM showed lower performance, with kappa index values of 0.82 and 0.78, compared to RF 0.86 and 0.82, and KNN 0.86 and 0.82. The KNN and RF algorithms performed well, with individual accuracy rates above 85% for both sample spaces. Overall, the KNN algorithm demonstrated superiority for the RGB sample space, whereas the RF algorithm excelled for the multispectral sample space. Even with the better performance of multispectral images, machine learning algorithms applied to RGB samples produced promising results for crop classification.","PeriodicalId":505370,"journal":{"name":"AgriEngineering","volume":"36 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UAV-Based Classification of Intercropped Forage Cactus: A Comparison of RGB and Multispectral Sample Spaces Using Machine Learning in an Irrigated Area\",\"authors\":\"Oto Barbosa de Andrade, A. Montenegro, Moisés Alves da Silva Neto, L. D. B. D. Sousa, T. Almeida, João L. M. P. de de Lima, Ailton Alves de Carvalho, Marcos Vinícius da Silva, Victor Wanderley Costa de Medeiros, Rodrigo Gabriel Ferreira Soares, T. G. F. Silva, B. P. Vilar\",\"doi\":\"10.3390/agriengineering6010031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precision agriculture requires accurate methods for classifying crops and soil cover in agricultural production areas. The study aims to evaluate three machine learning-based classifiers to identify intercropped forage cactus cultivation in irrigated areas using Unmanned Aerial Vehicles (UAV). It conducted a comparative analysis between multispectral and visible Red-Green-Blue (RGB) sampling, followed by the efficiency analysis of Gaussian Mixture Model (GMM), K-Nearest Neighbors (KNN), and Random Forest (RF) algorithms. The classification targets included exposed soil, mulching soil cover, developed and undeveloped forage cactus, moringa, and gliricidia in the Brazilian semiarid. The results indicated that the KNN and RF algorithms outperformed other methods, showing no significant differences according to the kappa index for both Multispectral and RGB sample spaces. In contrast, the GMM showed lower performance, with kappa index values of 0.82 and 0.78, compared to RF 0.86 and 0.82, and KNN 0.86 and 0.82. The KNN and RF algorithms performed well, with individual accuracy rates above 85% for both sample spaces. Overall, the KNN algorithm demonstrated superiority for the RGB sample space, whereas the RF algorithm excelled for the multispectral sample space. Even with the better performance of multispectral images, machine learning algorithms applied to RGB samples produced promising results for crop classification.\",\"PeriodicalId\":505370,\"journal\":{\"name\":\"AgriEngineering\",\"volume\":\"36 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AgriEngineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/agriengineering6010031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgriEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriengineering6010031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

精准农业需要精确的方法来对农业生产区的作物和土壤覆盖物进行分类。本研究旨在评估三种基于机器学习的分类器,以利用无人机(UAV)识别灌溉区的间作仙人掌饲料种植。研究对多光谱采样和可见光红绿蓝(RGB)采样进行了比较分析,随后对高斯混合模型(GMM)、K-最近邻(KNN)和随机森林(RF)算法进行了效率分析。分类目标包括巴西半干旱地区的裸露土壤、覆盖土壤、发达和未发达的饲料仙人掌、Moringa 和 gliricidia。结果表明,KNN 和 RF 算法优于其他方法,根据多光谱和 RGB 样本空间的 kappa 指数,两者无显著差异。相比之下,GMM 的性能较低,卡帕指数值分别为 0.82 和 0.78,而 RF 为 0.86 和 0.82,KNN 为 0.86 和 0.82。KNN 和 RF 算法表现出色,两个样本空间的单个准确率均超过 85%。总体而言,KNN 算法在 RGB 样本空间中表现出色,而 RF 算法在多光谱样本空间中表现出色。即使多光谱图像的性能更好,应用于 RGB 样本的机器学习算法也能为作物分类带来可喜的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UAV-Based Classification of Intercropped Forage Cactus: A Comparison of RGB and Multispectral Sample Spaces Using Machine Learning in an Irrigated Area
Precision agriculture requires accurate methods for classifying crops and soil cover in agricultural production areas. The study aims to evaluate three machine learning-based classifiers to identify intercropped forage cactus cultivation in irrigated areas using Unmanned Aerial Vehicles (UAV). It conducted a comparative analysis between multispectral and visible Red-Green-Blue (RGB) sampling, followed by the efficiency analysis of Gaussian Mixture Model (GMM), K-Nearest Neighbors (KNN), and Random Forest (RF) algorithms. The classification targets included exposed soil, mulching soil cover, developed and undeveloped forage cactus, moringa, and gliricidia in the Brazilian semiarid. The results indicated that the KNN and RF algorithms outperformed other methods, showing no significant differences according to the kappa index for both Multispectral and RGB sample spaces. In contrast, the GMM showed lower performance, with kappa index values of 0.82 and 0.78, compared to RF 0.86 and 0.82, and KNN 0.86 and 0.82. The KNN and RF algorithms performed well, with individual accuracy rates above 85% for both sample spaces. Overall, the KNN algorithm demonstrated superiority for the RGB sample space, whereas the RF algorithm excelled for the multispectral sample space. Even with the better performance of multispectral images, machine learning algorithms applied to RGB samples produced promising results for crop classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信