Orlicz-Lorentz-Karamata Hardy martingale 空间:不等式和分数积分算子

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zhiwei Hao, Libo Li, Long Long, Ferenc Weisz
{"title":"Orlicz-Lorentz-Karamata Hardy martingale 空间:不等式和分数积分算子","authors":"Zhiwei Hao, Libo Li, Long Long, Ferenc Weisz","doi":"10.1007/s13540-024-00259-3","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(0&lt;q\\le \\infty \\)</span>, <i>b</i> be a slowly varying function and <span>\\( \\Phi : [0,\\infty ) \\longrightarrow [0,\\infty ) \\)</span> be an increasing function with <span>\\(\\Phi (0)=0\\)</span> and <span>\\(\\lim \\limits _{r \\rightarrow \\infty }\\Phi (r)=\\infty \\)</span>. In this paper, we introduce a new class of function spaces <span>\\(L_{\\Phi ,q,b}\\)</span> which unify and generalize the Lorentz-Karamata spaces with <span>\\(\\Phi (t)=t^p\\)</span> and the Orlicz-Lorentz spaces with <span>\\(b\\equiv 1\\)</span>. Based on the new spaces, we introduce five new Hardy spaces containing martingales, the so-called Orlicz-Lorentz-Karamata Hardy martingale spaces and then develop a theory of these martingale Hardy spaces. To be precise, we first investigate several properties of Orlicz-Lorentz-Karamata spaces and then present Doob’s maximal inequalities by using Hardy’s inequalities. The characterization of these Hardy martingale spaces are constructed via the atomic decompositions. As applications of the atomic decompositions, martingale inequalities and the relation of the different martingale Hardy spaces are presented. The dual theorems and a new John-Nirenberg type inequality for the new framework are also established. Moreover, we study the boundedness of fractional integral operators on Orlicz-Lorentz-Karamata Hardy martingale spaces. The results obtained here generalize the previous results for Lorentz-Karamata Hardy martingale spaces as well as for Orlicz-Lorentz Hardy martingales spaces. Especially, we remove the condition that <i>b</i> is non-decreasing as in [38, 39] and the condition <span>\\(q_{\\Phi ^{-1}}&lt;1/q\\)</span> in [24], respectively.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orlicz-Lorentz-Karamata Hardy martingale spaces: inequalities and fractional integral operators\",\"authors\":\"Zhiwei Hao, Libo Li, Long Long, Ferenc Weisz\",\"doi\":\"10.1007/s13540-024-00259-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(0&lt;q\\\\le \\\\infty \\\\)</span>, <i>b</i> be a slowly varying function and <span>\\\\( \\\\Phi : [0,\\\\infty ) \\\\longrightarrow [0,\\\\infty ) \\\\)</span> be an increasing function with <span>\\\\(\\\\Phi (0)=0\\\\)</span> and <span>\\\\(\\\\lim \\\\limits _{r \\\\rightarrow \\\\infty }\\\\Phi (r)=\\\\infty \\\\)</span>. In this paper, we introduce a new class of function spaces <span>\\\\(L_{\\\\Phi ,q,b}\\\\)</span> which unify and generalize the Lorentz-Karamata spaces with <span>\\\\(\\\\Phi (t)=t^p\\\\)</span> and the Orlicz-Lorentz spaces with <span>\\\\(b\\\\equiv 1\\\\)</span>. Based on the new spaces, we introduce five new Hardy spaces containing martingales, the so-called Orlicz-Lorentz-Karamata Hardy martingale spaces and then develop a theory of these martingale Hardy spaces. To be precise, we first investigate several properties of Orlicz-Lorentz-Karamata spaces and then present Doob’s maximal inequalities by using Hardy’s inequalities. The characterization of these Hardy martingale spaces are constructed via the atomic decompositions. As applications of the atomic decompositions, martingale inequalities and the relation of the different martingale Hardy spaces are presented. The dual theorems and a new John-Nirenberg type inequality for the new framework are also established. Moreover, we study the boundedness of fractional integral operators on Orlicz-Lorentz-Karamata Hardy martingale spaces. The results obtained here generalize the previous results for Lorentz-Karamata Hardy martingale spaces as well as for Orlicz-Lorentz Hardy martingales spaces. Especially, we remove the condition that <i>b</i> is non-decreasing as in [38, 39] and the condition <span>\\\\(q_{\\\\Phi ^{-1}}&lt;1/q\\\\)</span> in [24], respectively.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00259-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00259-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

讓 \(0<q\le \infty \)、b 是一個緩慢變化的函數,而 \( \Phi : [0,\infty ) \longrightarrow [0,\infty ) \)是一個遞增的函數,且\)是一个递增函数,具有(Phi (0)=0\) 和(lim \limits _{r \rightarrow \infty }\Phi (r)=\infty \)。在本文中,我们引入了一类新的函数空间(L_{/Phi ,q,b}/),它统一并概括了洛伦兹-卡拉马塔空间(Lorentz-Karamata spaces with \\Phi (t)=t^p\) and the Orlicz-Lorentz spaces with \(b\equiv 1\).在新空间的基础上,我们引入了五个新的包含马汀值的哈代空间,即所谓的奥利兹-洛伦兹-卡拉玛塔哈代马汀值空间,然后发展了这些马汀值哈代空间的理论。确切地说,我们首先研究了 Orlicz-Lorentz-Karamata 空间的几个性质,然后利用哈代不等式提出了 Doob 最大不等式。通过原子分解构建了这些哈代鞅空间的特征。作为原子分解的应用,提出了马汀不等式和不同马汀哈代空间的关系。我们还为新框架建立了对偶定理和新的约翰-尼伦伯格式不等式。此外,我们还研究了 Orlicz-Lorentz-Karamata Hardy martingale 空间上分数积分算子的有界性。这里得到的结果推广了之前针对洛伦兹-卡拉马塔哈代鞅空间以及奥利奇-洛伦兹哈代鞅空间的结果。特别是,我们分别去掉了 [38, 39] 中 b 是非递减的条件和 [24] 中 \(q_{\Phi ^{-1}}<1/q\) 的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orlicz-Lorentz-Karamata Hardy martingale spaces: inequalities and fractional integral operators

Let \(0<q\le \infty \), b be a slowly varying function and \( \Phi : [0,\infty ) \longrightarrow [0,\infty ) \) be an increasing function with \(\Phi (0)=0\) and \(\lim \limits _{r \rightarrow \infty }\Phi (r)=\infty \). In this paper, we introduce a new class of function spaces \(L_{\Phi ,q,b}\) which unify and generalize the Lorentz-Karamata spaces with \(\Phi (t)=t^p\) and the Orlicz-Lorentz spaces with \(b\equiv 1\). Based on the new spaces, we introduce five new Hardy spaces containing martingales, the so-called Orlicz-Lorentz-Karamata Hardy martingale spaces and then develop a theory of these martingale Hardy spaces. To be precise, we first investigate several properties of Orlicz-Lorentz-Karamata spaces and then present Doob’s maximal inequalities by using Hardy’s inequalities. The characterization of these Hardy martingale spaces are constructed via the atomic decompositions. As applications of the atomic decompositions, martingale inequalities and the relation of the different martingale Hardy spaces are presented. The dual theorems and a new John-Nirenberg type inequality for the new framework are also established. Moreover, we study the boundedness of fractional integral operators on Orlicz-Lorentz-Karamata Hardy martingale spaces. The results obtained here generalize the previous results for Lorentz-Karamata Hardy martingale spaces as well as for Orlicz-Lorentz Hardy martingales spaces. Especially, we remove the condition that b is non-decreasing as in [38, 39] and the condition \(q_{\Phi ^{-1}}<1/q\) in [24], respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信