{"title":"剪子和顶点代数模数的维拉索罗约束","authors":"Arkadij Bojko, Woonam Lim, Miguel Moreira","doi":"10.1007/s00222-024-01245-5","DOIUrl":null,"url":null,"abstract":"<p>In enumerative geometry, Virasoro constraints were first conjectured in Gromov-Witten theory with many new recent developments in the sheaf theoretic context. In this paper, we rephrase the sheaf theoretic Virasoro constraints in terms of primary states coming from a natural conformal vector in Joyce’s vertex algebra. This shows that Virasoro constraints are preserved under wall-crossing. As an application, we prove the conjectural Virasoro constraints for moduli spaces of torsion-free sheaves on any curve and on surfaces with only <span>\\((p,p)\\)</span> cohomology classes by reducing the statements to the rank 1 case.</p>","PeriodicalId":14429,"journal":{"name":"Inventiones mathematicae","volume":"1 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virasoro constraints for moduli of sheaves and vertex algebras\",\"authors\":\"Arkadij Bojko, Woonam Lim, Miguel Moreira\",\"doi\":\"10.1007/s00222-024-01245-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In enumerative geometry, Virasoro constraints were first conjectured in Gromov-Witten theory with many new recent developments in the sheaf theoretic context. In this paper, we rephrase the sheaf theoretic Virasoro constraints in terms of primary states coming from a natural conformal vector in Joyce’s vertex algebra. This shows that Virasoro constraints are preserved under wall-crossing. As an application, we prove the conjectural Virasoro constraints for moduli spaces of torsion-free sheaves on any curve and on surfaces with only <span>\\\\((p,p)\\\\)</span> cohomology classes by reducing the statements to the rank 1 case.</p>\",\"PeriodicalId\":14429,\"journal\":{\"name\":\"Inventiones mathematicae\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inventiones mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-024-01245-5\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventiones mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01245-5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Virasoro constraints for moduli of sheaves and vertex algebras
In enumerative geometry, Virasoro constraints were first conjectured in Gromov-Witten theory with many new recent developments in the sheaf theoretic context. In this paper, we rephrase the sheaf theoretic Virasoro constraints in terms of primary states coming from a natural conformal vector in Joyce’s vertex algebra. This shows that Virasoro constraints are preserved under wall-crossing. As an application, we prove the conjectural Virasoro constraints for moduli spaces of torsion-free sheaves on any curve and on surfaces with only \((p,p)\) cohomology classes by reducing the statements to the rank 1 case.
期刊介绍:
This journal is published at frequent intervals to bring out new contributions to mathematics. It is a policy of the journal to publish papers within four months of acceptance. Once a paper is accepted it goes immediately into production and no changes can be made by the author(s).