基于筛选一致波长和直接标准化算法的汽油辛烷值近红外校准转移

IF 1.6 4区 化学 Q3 CHEMISTRY, APPLIED
Wang Honghong, Yuan Hui, Xiong Zhixin
{"title":"基于筛选一致波长和直接标准化算法的汽油辛烷值近红外校准转移","authors":"Wang Honghong, Yuan Hui, Xiong Zhixin","doi":"10.1177/09670335241232093","DOIUrl":null,"url":null,"abstract":"In order to share multivariate calibration models of gasoline research octane number (RON) between different near infrared spectrometers, a novel calibration transfer method, namely combination of screening consistent wavelengths and direct standardization (SWCSS-DS) was proposed. Firstly, screening wavelengths with consistent and stable signals (SWCSS) between instruments was used to select the wavelengths with best stability, and then direct standardization (DS) further corrected the systematic errors that still exist after the SWCSS was implemented. The spectra of 120 standard gasoline samples collected on two near infrared spectrometers of the same type were investigated in detail to verify the validity of the new algorithm. Compared results of other transfer methods such as SWCSS, Slope/Bias (S/B), direct standardisation (DS), and piecewise direct standardization (PDS), the root mean squared error for prediction (RMSEP) of SWCSS-DS algorithm for target samples was decreased from 5.75 to 0.295, and the Akaike information criterion (AIC) value decreased from 1516 to 640, which were better than those of the SWCSS, S/B, DS and PDS algorithms. Therefore, the joint algorithm of SWCSS-DS has not only improved the universality of the master model, but also reduced the dimension of the spectral matrix and calibration equation, that would provide a more efficient model transfer strategy for the practical applications.","PeriodicalId":16551,"journal":{"name":"Journal of Near Infrared Spectroscopy","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer of near infrared calibration for gasoline octane number based on screening consistent wavelengths combined with direct standardization algorithm\",\"authors\":\"Wang Honghong, Yuan Hui, Xiong Zhixin\",\"doi\":\"10.1177/09670335241232093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to share multivariate calibration models of gasoline research octane number (RON) between different near infrared spectrometers, a novel calibration transfer method, namely combination of screening consistent wavelengths and direct standardization (SWCSS-DS) was proposed. Firstly, screening wavelengths with consistent and stable signals (SWCSS) between instruments was used to select the wavelengths with best stability, and then direct standardization (DS) further corrected the systematic errors that still exist after the SWCSS was implemented. The spectra of 120 standard gasoline samples collected on two near infrared spectrometers of the same type were investigated in detail to verify the validity of the new algorithm. Compared results of other transfer methods such as SWCSS, Slope/Bias (S/B), direct standardisation (DS), and piecewise direct standardization (PDS), the root mean squared error for prediction (RMSEP) of SWCSS-DS algorithm for target samples was decreased from 5.75 to 0.295, and the Akaike information criterion (AIC) value decreased from 1516 to 640, which were better than those of the SWCSS, S/B, DS and PDS algorithms. Therefore, the joint algorithm of SWCSS-DS has not only improved the universality of the master model, but also reduced the dimension of the spectral matrix and calibration equation, that would provide a more efficient model transfer strategy for the practical applications.\",\"PeriodicalId\":16551,\"journal\":{\"name\":\"Journal of Near Infrared Spectroscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Near Infrared Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/09670335241232093\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Near Infrared Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09670335241232093","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

为了在不同的近红外光谱仪之间共享汽油研究辛烷值(RON)的多元标定模型,提出了一种新的标定转移方法,即筛选一致波长和直接标准化(SWCSS-DS)相结合的方法。首先,利用仪器间信号一致且稳定的波长筛选(SWCSS)来选择稳定性最好的波长,然后直接标准化(DS)进一步修正 SWCSS 实施后仍然存在的系统误差。为了验证新算法的有效性,我们详细研究了在两台同类型近红外光谱仪上采集的 120 个标准汽油样品的光谱。与 SWCSS、Slope/Bias(S/B)、直接标准化(DS)和片断直接标准化(PDS)等其他转移方法的结果相比,SWCSS-DS 算法对目标样品的预测均方根误差(RMSEP)从 5.75 降至 0.295,阿凯克信息准则(AIC)值从 1516 降至 640,均优于 SWCSS、S/B、DS 和 PDS 算法。因此,SWCSS-DS 联合算法不仅提高了主模型的普适性,而且降低了谱矩阵和定标方程的维数,为实际应用提供了更有效的模型转移策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer of near infrared calibration for gasoline octane number based on screening consistent wavelengths combined with direct standardization algorithm
In order to share multivariate calibration models of gasoline research octane number (RON) between different near infrared spectrometers, a novel calibration transfer method, namely combination of screening consistent wavelengths and direct standardization (SWCSS-DS) was proposed. Firstly, screening wavelengths with consistent and stable signals (SWCSS) between instruments was used to select the wavelengths with best stability, and then direct standardization (DS) further corrected the systematic errors that still exist after the SWCSS was implemented. The spectra of 120 standard gasoline samples collected on two near infrared spectrometers of the same type were investigated in detail to verify the validity of the new algorithm. Compared results of other transfer methods such as SWCSS, Slope/Bias (S/B), direct standardisation (DS), and piecewise direct standardization (PDS), the root mean squared error for prediction (RMSEP) of SWCSS-DS algorithm for target samples was decreased from 5.75 to 0.295, and the Akaike information criterion (AIC) value decreased from 1516 to 640, which were better than those of the SWCSS, S/B, DS and PDS algorithms. Therefore, the joint algorithm of SWCSS-DS has not only improved the universality of the master model, but also reduced the dimension of the spectral matrix and calibration equation, that would provide a more efficient model transfer strategy for the practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
35
审稿时长
6 months
期刊介绍: JNIRS — Journal of Near Infrared Spectroscopy is a peer reviewed journal, publishing original research papers, short communications, review articles and letters concerned with near infrared spectroscopy and technology, its application, new instrumentation and the use of chemometric and data handling techniques within NIR.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信