{"title":"横向循环荷载下填充磷石膏的冷弯薄壁钢墙:测试与分析","authors":"Song Hu, Li Zhou, Yong Huang","doi":"10.1177/13694332241232047","DOIUrl":null,"url":null,"abstract":"In order to improve the shear capacity and seismic performance of cold–formed thin–walled steel (CFS) walls, in this research, a novel CFS wall filled with phosphogypsum (PG) was developed. Taking PG filling area and covering the wall with sheathing as design parameters, four full–scale test specimens were designed and constructed. Failure mode and seismic performance indexes of each specimen were investigated by performing cyclic loading tests and the effect of PG filler on CFS wall seismic performance was evaluated. Research results showed that PG filler significantly improved the seismic performance and shear capacity of CFS walls. Importantly, the proposed wall presented a remarkable dual–mechanism of lateral force resistance, which was provided by PG filler and wall sheathings, respectively. In addition, analytical models were developed for the calculation of the shear capacity and lateral stiffness of the proposed walls, which presented high prediction accuracy.","PeriodicalId":50849,"journal":{"name":"Advances in Structural Engineering","volume":"49 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cold–formed thin–walled steel walls filled with phosphogypsum subjected to lateral cyclic loading: testing and analysis\",\"authors\":\"Song Hu, Li Zhou, Yong Huang\",\"doi\":\"10.1177/13694332241232047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the shear capacity and seismic performance of cold–formed thin–walled steel (CFS) walls, in this research, a novel CFS wall filled with phosphogypsum (PG) was developed. Taking PG filling area and covering the wall with sheathing as design parameters, four full–scale test specimens were designed and constructed. Failure mode and seismic performance indexes of each specimen were investigated by performing cyclic loading tests and the effect of PG filler on CFS wall seismic performance was evaluated. Research results showed that PG filler significantly improved the seismic performance and shear capacity of CFS walls. Importantly, the proposed wall presented a remarkable dual–mechanism of lateral force resistance, which was provided by PG filler and wall sheathings, respectively. In addition, analytical models were developed for the calculation of the shear capacity and lateral stiffness of the proposed walls, which presented high prediction accuracy.\",\"PeriodicalId\":50849,\"journal\":{\"name\":\"Advances in Structural Engineering\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Structural Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13694332241232047\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Structural Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241232047","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Cold–formed thin–walled steel walls filled with phosphogypsum subjected to lateral cyclic loading: testing and analysis
In order to improve the shear capacity and seismic performance of cold–formed thin–walled steel (CFS) walls, in this research, a novel CFS wall filled with phosphogypsum (PG) was developed. Taking PG filling area and covering the wall with sheathing as design parameters, four full–scale test specimens were designed and constructed. Failure mode and seismic performance indexes of each specimen were investigated by performing cyclic loading tests and the effect of PG filler on CFS wall seismic performance was evaluated. Research results showed that PG filler significantly improved the seismic performance and shear capacity of CFS walls. Importantly, the proposed wall presented a remarkable dual–mechanism of lateral force resistance, which was provided by PG filler and wall sheathings, respectively. In addition, analytical models were developed for the calculation of the shear capacity and lateral stiffness of the proposed walls, which presented high prediction accuracy.
期刊介绍:
Advances in Structural Engineering was established in 1997 and has become one of the major peer-reviewed journals in the field of structural engineering. To better fulfil the mission of the journal, we have recently decided to launch two new features for the journal: (a) invited review papers providing an in-depth exposition of a topic of significant current interest; (b) short papers reporting truly new technologies in structural engineering.