论冈察洛夫深度猜想和深度为 2 的多项式

Steven Charlton, Herbert Gangl, Danylo Radchenko, Daniil Rudenko
{"title":"论冈察洛夫深度猜想和深度为 2 的多项式","authors":"Steven Charlton, Herbert Gangl, Danylo Radchenko, Daniil Rudenko","doi":"10.1007/s00029-024-00918-6","DOIUrl":null,"url":null,"abstract":"<p>We prove the surjectivity part of Goncharov’s depth conjecture over a quadratically closed field. We also show that the depth conjecture implies that multiple polylogarithms of depth <i>d</i> and weight <i>n</i> can be expressed via a single function <span>\\({{\\,\\textrm{Li}\\,}}_{n-d+1,1,\\dots ,1}(a_1,a_2,\\dots ,a_d)\\)</span>, and we prove this latter statement for <span>\\(d=2\\)</span>.\n</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Goncharov depth conjecture and polylogarithms of depth two\",\"authors\":\"Steven Charlton, Herbert Gangl, Danylo Radchenko, Daniil Rudenko\",\"doi\":\"10.1007/s00029-024-00918-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove the surjectivity part of Goncharov’s depth conjecture over a quadratically closed field. We also show that the depth conjecture implies that multiple polylogarithms of depth <i>d</i> and weight <i>n</i> can be expressed via a single function <span>\\\\({{\\\\,\\\\textrm{Li}\\\\,}}_{n-d+1,1,\\\\dots ,1}(a_1,a_2,\\\\dots ,a_d)\\\\)</span>, and we prove this latter statement for <span>\\\\(d=2\\\\)</span>.\\n</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00918-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00918-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了冈察洛夫在二次封闭域上的深度猜想的可射性部分。我们还证明了深度猜想意味着深度为 d、权重为 n 的多个多项式可以通过一个函数 \({{\,\textrm{Li}\,}}_{n-d+1,1,\dots ,1}(a_1,a_2,\dots ,a_d)\) 来表达,并且我们证明了后\(d=2\)的这一声明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Goncharov depth conjecture and polylogarithms of depth two

We prove the surjectivity part of Goncharov’s depth conjecture over a quadratically closed field. We also show that the depth conjecture implies that multiple polylogarithms of depth d and weight n can be expressed via a single function \({{\,\textrm{Li}\,}}_{n-d+1,1,\dots ,1}(a_1,a_2,\dots ,a_d)\), and we prove this latter statement for \(d=2\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信