嵌入一维光子晶体的胶体掺杂半导体纳米晶体用于超快光子学

IF 2.5 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ilka Kriegel, Francesco Scotognella
{"title":"嵌入一维光子晶体的胶体掺杂半导体纳米晶体用于超快光子学","authors":"Ilka Kriegel, Francesco Scotognella","doi":"10.1002/pssr.202300476","DOIUrl":null,"url":null,"abstract":"The optical properties of strongly doped semiconductor nanocrystals depend strongly on the carrier density of the nanocrystals. These characteristics can be exploited for the design of innovative optical devices based on ultrafast switching potentially in the THz modulation bandwidth. In this study, the optical response of one‐dimensional photonic crystals incorporating colloidal nanoparticles of a highly doped semiconductor such as indium tin oxide was investigated, taking into consideration the angular dependence of the photonic band gap and the position dependence of the photonic band gap on the light‐induced tunability of the indium tin oxide doping.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"35 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colloidal doped semiconductor nanocrystals embedded in one‐dimensional photonic crystals for ultrafast photonics\",\"authors\":\"Ilka Kriegel, Francesco Scotognella\",\"doi\":\"10.1002/pssr.202300476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optical properties of strongly doped semiconductor nanocrystals depend strongly on the carrier density of the nanocrystals. These characteristics can be exploited for the design of innovative optical devices based on ultrafast switching potentially in the THz modulation bandwidth. In this study, the optical response of one‐dimensional photonic crystals incorporating colloidal nanoparticles of a highly doped semiconductor such as indium tin oxide was investigated, taking into consideration the angular dependence of the photonic band gap and the position dependence of the photonic band gap on the light‐induced tunability of the indium tin oxide doping.This article is protected by copyright. All rights reserved.\",\"PeriodicalId\":54619,\"journal\":{\"name\":\"Physica Status Solidi-Rapid Research Letters\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi-Rapid Research Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/pssr.202300476\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi-Rapid Research Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssr.202300476","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

强掺杂半导体纳米晶体的光学特性在很大程度上取决于纳米晶体的载流子密度。这些特性可用于设计基于太赫兹调制带宽的超快开关的创新光学设备。在这项研究中,考虑到光子带隙的角度依赖性和光子带隙的位置依赖性,研究了掺入高掺杂半导体(如氧化铟锡)胶体纳米粒子的一维光子晶体的光学响应。本文受版权保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Colloidal doped semiconductor nanocrystals embedded in one‐dimensional photonic crystals for ultrafast photonics
The optical properties of strongly doped semiconductor nanocrystals depend strongly on the carrier density of the nanocrystals. These characteristics can be exploited for the design of innovative optical devices based on ultrafast switching potentially in the THz modulation bandwidth. In this study, the optical response of one‐dimensional photonic crystals incorporating colloidal nanoparticles of a highly doped semiconductor such as indium tin oxide was investigated, taking into consideration the angular dependence of the photonic band gap and the position dependence of the photonic band gap on the light‐induced tunability of the indium tin oxide doping.This article is protected by copyright. All rights reserved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica Status Solidi-Rapid Research Letters
Physica Status Solidi-Rapid Research Letters 物理-材料科学:综合
CiteScore
5.20
自引率
3.60%
发文量
208
审稿时长
1.4 months
期刊介绍: Physica status solidi (RRL) - Rapid Research Letters was designed to offer extremely fast publication times and is currently one of the fastest double peer-reviewed publication media in solid state and materials physics. Average times are 11 days from submission to first editorial decision, and 12 days from acceptance to online publication. It communicates important findings with a high degree of novelty and need for express publication, as well as other results of immediate interest to the solid-state physics and materials science community. Published Letters require approval by at least two independent reviewers. The journal covers topics such as preparation, structure and simulation of advanced materials, theoretical and experimental investigations of the atomistic and electronic structure, optical, magnetic, superconducting, ferroelectric and other properties of solids, nanostructures and low-dimensional systems as well as device applications. Rapid Research Letters particularly invites papers from interdisciplinary and emerging new areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信