通过可交换性促进 PAC 学习

Leonardo N. Coregliano, Maryanthe Malliaris
{"title":"通过可交换性促进 PAC 学习","authors":"Leonardo N. Coregliano, Maryanthe Malliaris","doi":"arxiv-2402.14294","DOIUrl":null,"url":null,"abstract":"We develop a theory of high-arity PAC learning, which is statistical learning\nin the presence of \"structured correlation\". In this theory, hypotheses are\neither graphs, hypergraphs or, more generally, structures in finite relational\nlanguages, and i.i.d. sampling is replaced by sampling an induced substructure,\nproducing an exchangeable distribution. We prove a high-arity version of the\nfundamental theorem of statistical learning by characterizing high-arity\n(agnostic) PAC learnability in terms of finiteness of a purely combinatorial\ndimension and in terms of an appropriate version of uniform convergence.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"145 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-arity PAC learning via exchangeability\",\"authors\":\"Leonardo N. Coregliano, Maryanthe Malliaris\",\"doi\":\"arxiv-2402.14294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a theory of high-arity PAC learning, which is statistical learning\\nin the presence of \\\"structured correlation\\\". In this theory, hypotheses are\\neither graphs, hypergraphs or, more generally, structures in finite relational\\nlanguages, and i.i.d. sampling is replaced by sampling an induced substructure,\\nproducing an exchangeable distribution. We prove a high-arity version of the\\nfundamental theorem of statistical learning by characterizing high-arity\\n(agnostic) PAC learnability in terms of finiteness of a purely combinatorial\\ndimension and in terms of an appropriate version of uniform convergence.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"145 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2402.14294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.14294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种高arity PAC 学习理论,即存在 "结构相关性 "的统计学习。在这一理论中,假设既可以是图、超图,也可以是有限关系语言中的结构,而且 i.i.d. 取样被诱导子结构取样所取代,从而产生可交换分布。我们用纯组合维度的有限性和适当版本的均匀收敛来描述高稀有性(不可知论)PAC 可学性,从而证明了统计学习基本定理的高稀有性版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-arity PAC learning via exchangeability
We develop a theory of high-arity PAC learning, which is statistical learning in the presence of "structured correlation". In this theory, hypotheses are either graphs, hypergraphs or, more generally, structures in finite relational languages, and i.i.d. sampling is replaced by sampling an induced substructure, producing an exchangeable distribution. We prove a high-arity version of the fundamental theorem of statistical learning by characterizing high-arity (agnostic) PAC learnability in terms of finiteness of a purely combinatorial dimension and in terms of an appropriate version of uniform convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信