双壳 CdS 纳米笼光催化二氧化碳还原和生物胺氧化

IF 3.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Haoran Liu , Hanlin Zhou , Luowen Yang , Yixian Pan , Xin Zhao , Fengliang Wang , Ruiqi Fang , Yingwei Li
{"title":"双壳 CdS 纳米笼光催化二氧化碳还原和生物胺氧化","authors":"Haoran Liu ,&nbsp;Hanlin Zhou ,&nbsp;Luowen Yang ,&nbsp;Yixian Pan ,&nbsp;Xin Zhao ,&nbsp;Fengliang Wang ,&nbsp;Ruiqi Fang ,&nbsp;Yingwei Li","doi":"10.1016/j.catcom.2024.106884","DOIUrl":null,"url":null,"abstract":"<div><p>Solar-driven CO<sub>2</sub> reduction to CO production is often hampered by the kinetically sluggish water photooxidation and fast recombination of photocarriers. Herein, we report a photoredox system of CO<sub>2</sub> reduction coupled with biomass-based amines oxidation. Double-shelled CdS nanocages (CdS DSNC) are synthesized by a successive etching‑sulfuration strategy, which delivers impressive CO and difurfurylamine yields of 1226.4 and 5526.5 μmol·g<sup>−1</sup>·h<sup>−1</sup>, respectively. Mechanism studies uncover that the double-shelled structure endows CdS DSNC with high accessibility of active sites and short transfer distance for photocarriers. Besides, furfurylamine serves as both the electron donor and the capturer of CO<sub>2</sub>, thus boosting the photoredox performance.</p></div>","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":"187 ","pages":"Article 106884"},"PeriodicalIF":3.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S156673672400044X/pdfft?md5=07c989a8f409b20f352707c34cdb80c9&pid=1-s2.0-S156673672400044X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic CO2 reduction coupled with biomass-based amines oxidation over double-shelled CdS nanocages\",\"authors\":\"Haoran Liu ,&nbsp;Hanlin Zhou ,&nbsp;Luowen Yang ,&nbsp;Yixian Pan ,&nbsp;Xin Zhao ,&nbsp;Fengliang Wang ,&nbsp;Ruiqi Fang ,&nbsp;Yingwei Li\",\"doi\":\"10.1016/j.catcom.2024.106884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solar-driven CO<sub>2</sub> reduction to CO production is often hampered by the kinetically sluggish water photooxidation and fast recombination of photocarriers. Herein, we report a photoredox system of CO<sub>2</sub> reduction coupled with biomass-based amines oxidation. Double-shelled CdS nanocages (CdS DSNC) are synthesized by a successive etching‑sulfuration strategy, which delivers impressive CO and difurfurylamine yields of 1226.4 and 5526.5 μmol·g<sup>−1</sup>·h<sup>−1</sup>, respectively. Mechanism studies uncover that the double-shelled structure endows CdS DSNC with high accessibility of active sites and short transfer distance for photocarriers. Besides, furfurylamine serves as both the electron donor and the capturer of CO<sub>2</sub>, thus boosting the photoredox performance.</p></div>\",\"PeriodicalId\":263,\"journal\":{\"name\":\"Catalysis Communications\",\"volume\":\"187 \",\"pages\":\"Article 106884\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S156673672400044X/pdfft?md5=07c989a8f409b20f352707c34cdb80c9&pid=1-s2.0-S156673672400044X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156673672400044X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156673672400044X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

太阳能驱动的二氧化碳还原生成一氧化碳的过程往往受到动力学缓慢的水光氧化作用和光载体快速重组的阻碍。在此,我们报告了一种二氧化碳还原与生物质胺氧化耦合的光氧化系统。通过连续刻蚀-硫化策略合成了双壳 CdS 纳米笼(CdS DSNC),其 CO 和二糠胺产率分别达到了惊人的 1226.4 μmol-g-1-h-1 和 5526.5 μmol-g-1-h-1。机理研究发现,双壳结构使 CdS DSNC 具有高活性位点可达性和光载体传输距离短的特点。此外,糠胺既是电子供体,又是二氧化碳的捕获体,从而提高了光氧化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photocatalytic CO2 reduction coupled with biomass-based amines oxidation over double-shelled CdS nanocages

Photocatalytic CO2 reduction coupled with biomass-based amines oxidation over double-shelled CdS nanocages

Solar-driven CO2 reduction to CO production is often hampered by the kinetically sluggish water photooxidation and fast recombination of photocarriers. Herein, we report a photoredox system of CO2 reduction coupled with biomass-based amines oxidation. Double-shelled CdS nanocages (CdS DSNC) are synthesized by a successive etching‑sulfuration strategy, which delivers impressive CO and difurfurylamine yields of 1226.4 and 5526.5 μmol·g−1·h−1, respectively. Mechanism studies uncover that the double-shelled structure endows CdS DSNC with high accessibility of active sites and short transfer distance for photocarriers. Besides, furfurylamine serves as both the electron donor and the capturer of CO2, thus boosting the photoredox performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Communications
Catalysis Communications 化学-物理化学
CiteScore
6.20
自引率
2.70%
发文量
183
审稿时长
46 days
期刊介绍: Catalysis Communications aims to provide rapid publication of significant, novel, and timely research results homogeneous, heterogeneous, and enzymatic catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信