海森堡群低标度下的 C 1,α-可纠正性

IF 0.9 3区 数学 Q2 MATHEMATICS
Kennedy Obinna Idu, Francesco Paolo Maiale
{"title":"海森堡群低标度下的 C 1,α-可纠正性","authors":"Kennedy Obinna Idu, Francesco Paolo Maiale","doi":"10.1515/agms-2023-0105","DOIUrl":null,"url":null,"abstract":"A natural higher-order notion of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0105_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>α</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{C}^{1,\\alpha }</jats:tex-math> </jats:alternatives> </jats:inline-formula>-rectifiability, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0105_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0</m:mn> <m:mo>&lt;</m:mo> <m:mi>α</m:mi> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>0\\lt \\alpha \\le 1</jats:tex-math> </jats:alternatives> </jats:inline-formula>, is introduced for subsets of the Heisenberg groups <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0105_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\mathbb{H}}}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> in terms of covering a set almost everywhere with a countable union of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0105_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msubsup> <m:mrow> <m:mi mathvariant=\"bold\">C</m:mi> </m:mrow> <m:mrow> <m:mi>H</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>α</m:mi> </m:mrow> </m:msubsup> <m:mo>,</m:mo> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left({{\\bf{C}}}_{H}^{1,\\alpha },{\\mathbb{H}})</jats:tex-math> </jats:alternatives> </jats:inline-formula>-regular surfaces. Using this, we prove a geometric characterization of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0105_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>α</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{C}^{1,\\alpha }</jats:tex-math> </jats:alternatives> </jats:inline-formula>-rectifiable sets of low codimension in Heisenberg groups <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0105_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\mathbb{H}}}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> in terms of an almost everywhere existence of suitable approximate tangent paraboloids.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"48 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C 1,α-rectifiability in low codimension in Heisenberg groups\",\"authors\":\"Kennedy Obinna Idu, Francesco Paolo Maiale\",\"doi\":\"10.1515/agms-2023-0105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A natural higher-order notion of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0105_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>α</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{C}^{1,\\\\alpha }</jats:tex-math> </jats:alternatives> </jats:inline-formula>-rectifiability, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0105_eq_002.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mn>0</m:mn> <m:mo>&lt;</m:mo> <m:mi>α</m:mi> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>0\\\\lt \\\\alpha \\\\le 1</jats:tex-math> </jats:alternatives> </jats:inline-formula>, is introduced for subsets of the Heisenberg groups <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0105_eq_003.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\\\mathbb{H}}}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> in terms of covering a set almost everywhere with a countable union of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0105_eq_004.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msubsup> <m:mrow> <m:mi mathvariant=\\\"bold\\\">C</m:mi> </m:mrow> <m:mrow> <m:mi>H</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>α</m:mi> </m:mrow> </m:msubsup> <m:mo>,</m:mo> <m:mi mathvariant=\\\"double-struck\\\">H</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left({{\\\\bf{C}}}_{H}^{1,\\\\alpha },{\\\\mathbb{H}})</jats:tex-math> </jats:alternatives> </jats:inline-formula>-regular surfaces. Using this, we prove a geometric characterization of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0105_eq_005.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>α</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{C}^{1,\\\\alpha }</jats:tex-math> </jats:alternatives> </jats:inline-formula>-rectifiable sets of low codimension in Heisenberg groups <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0105_eq_006.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\\\mathbb{H}}}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> in terms of an almost everywhere existence of suitable approximate tangent paraboloids.\",\"PeriodicalId\":48637,\"journal\":{\"name\":\"Analysis and Geometry in Metric Spaces\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Geometry in Metric Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2023-0105\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2023-0105","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

C 1 的一个自然的高阶概念,α {C}^{1,\alpha } -0 < α ≤ 1 0\lt \alpha \le 1,是针对海森堡群 H n {{mathbb{H}}}^{n} 的子集引入的,即几乎无处不在地用 ( C H 1 , α , H ) \left({{\bf{C}}_{H}}^{1,\alpha },{\mathbb{H}}) 不规则曲面的可数联合覆盖一个集合。利用这一点,我们证明了 C 1 , α {C}^{1,\alpha } 的几何特征。 -在海森堡群 H n {{\mathbb{H}}}^{n} 中,几乎无处不存在合适的近似切线抛物面,从而证明了低标度可正集的几何特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
C 1,α-rectifiability in low codimension in Heisenberg groups
A natural higher-order notion of C 1 , α {C}^{1,\alpha } -rectifiability, 0 < α 1 0\lt \alpha \le 1 , is introduced for subsets of the Heisenberg groups H n {{\mathbb{H}}}^{n} in terms of covering a set almost everywhere with a countable union of ( C H 1 , α , H ) \left({{\bf{C}}}_{H}^{1,\alpha },{\mathbb{H}}) -regular surfaces. Using this, we prove a geometric characterization of C 1 , α {C}^{1,\alpha } -rectifiable sets of low codimension in Heisenberg groups H n {{\mathbb{H}}}^{n} in terms of an almost everywhere existence of suitable approximate tangent paraboloids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Geometry in Metric Spaces
Analysis and Geometry in Metric Spaces Mathematics-Geometry and Topology
CiteScore
1.80
自引率
0.00%
发文量
8
审稿时长
16 weeks
期刊介绍: Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed. AGMS is devoted to the publication of results on these and related topics: Geometric inequalities in metric spaces, Geometric measure theory and variational problems in metric spaces, Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density, Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds. Geometric control theory, Curvature in metric and length spaces, Geometric group theory, Harmonic Analysis. Potential theory, Mass transportation problems, Quasiconformal and quasiregular mappings. Quasiconformal geometry, PDEs associated to analytic and geometric problems in metric spaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信