{"title":"海森堡群低标度下的 C 1,α-可纠正性","authors":"Kennedy Obinna Idu, Francesco Paolo Maiale","doi":"10.1515/agms-2023-0105","DOIUrl":null,"url":null,"abstract":"A natural higher-order notion of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0105_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>α</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{C}^{1,\\alpha }</jats:tex-math> </jats:alternatives> </jats:inline-formula>-rectifiability, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0105_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>α</m:mi> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>0\\lt \\alpha \\le 1</jats:tex-math> </jats:alternatives> </jats:inline-formula>, is introduced for subsets of the Heisenberg groups <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0105_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\mathbb{H}}}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> in terms of covering a set almost everywhere with a countable union of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0105_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msubsup> <m:mrow> <m:mi mathvariant=\"bold\">C</m:mi> </m:mrow> <m:mrow> <m:mi>H</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>α</m:mi> </m:mrow> </m:msubsup> <m:mo>,</m:mo> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left({{\\bf{C}}}_{H}^{1,\\alpha },{\\mathbb{H}})</jats:tex-math> </jats:alternatives> </jats:inline-formula>-regular surfaces. Using this, we prove a geometric characterization of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0105_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>α</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{C}^{1,\\alpha }</jats:tex-math> </jats:alternatives> </jats:inline-formula>-rectifiable sets of low codimension in Heisenberg groups <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0105_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\mathbb{H}}}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> in terms of an almost everywhere existence of suitable approximate tangent paraboloids.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"48 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C 1,α-rectifiability in low codimension in Heisenberg groups\",\"authors\":\"Kennedy Obinna Idu, Francesco Paolo Maiale\",\"doi\":\"10.1515/agms-2023-0105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A natural higher-order notion of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0105_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>α</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{C}^{1,\\\\alpha }</jats:tex-math> </jats:alternatives> </jats:inline-formula>-rectifiability, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0105_eq_002.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>α</m:mi> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>0\\\\lt \\\\alpha \\\\le 1</jats:tex-math> </jats:alternatives> </jats:inline-formula>, is introduced for subsets of the Heisenberg groups <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0105_eq_003.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\\\mathbb{H}}}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> in terms of covering a set almost everywhere with a countable union of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0105_eq_004.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msubsup> <m:mrow> <m:mi mathvariant=\\\"bold\\\">C</m:mi> </m:mrow> <m:mrow> <m:mi>H</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>α</m:mi> </m:mrow> </m:msubsup> <m:mo>,</m:mo> <m:mi mathvariant=\\\"double-struck\\\">H</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left({{\\\\bf{C}}}_{H}^{1,\\\\alpha },{\\\\mathbb{H}})</jats:tex-math> </jats:alternatives> </jats:inline-formula>-regular surfaces. Using this, we prove a geometric characterization of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0105_eq_005.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>α</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{C}^{1,\\\\alpha }</jats:tex-math> </jats:alternatives> </jats:inline-formula>-rectifiable sets of low codimension in Heisenberg groups <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0105_eq_006.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\\\mathbb{H}}}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> in terms of an almost everywhere existence of suitable approximate tangent paraboloids.\",\"PeriodicalId\":48637,\"journal\":{\"name\":\"Analysis and Geometry in Metric Spaces\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Geometry in Metric Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2023-0105\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2023-0105","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
C 1 的一个自然的高阶概念,α {C}^{1,\alpha } -0 < α ≤ 1 0\lt \alpha \le 1,是针对海森堡群 H n {{mathbb{H}}}^{n} 的子集引入的,即几乎无处不在地用 ( C H 1 , α , H ) \left({{\bf{C}}_{H}}^{1,\alpha },{\mathbb{H}}) 不规则曲面的可数联合覆盖一个集合。利用这一点,我们证明了 C 1 , α {C}^{1,\alpha } 的几何特征。 -在海森堡群 H n {{\mathbb{H}}}^{n} 中,几乎无处不存在合适的近似切线抛物面,从而证明了低标度可正集的几何特征。
C 1,α-rectifiability in low codimension in Heisenberg groups
A natural higher-order notion of C1,α{C}^{1,\alpha }-rectifiability, 0<α≤10\lt \alpha \le 1, is introduced for subsets of the Heisenberg groups Hn{{\mathbb{H}}}^{n} in terms of covering a set almost everywhere with a countable union of (CH1,α,H)\left({{\bf{C}}}_{H}^{1,\alpha },{\mathbb{H}})-regular surfaces. Using this, we prove a geometric characterization of C1,α{C}^{1,\alpha }-rectifiable sets of low codimension in Heisenberg groups Hn{{\mathbb{H}}}^{n} in terms of an almost everywhere existence of suitable approximate tangent paraboloids.
期刊介绍:
Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed.
AGMS is devoted to the publication of results on these and related topics:
Geometric inequalities in metric spaces,
Geometric measure theory and variational problems in metric spaces,
Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density,
Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds.
Geometric control theory,
Curvature in metric and length spaces,
Geometric group theory,
Harmonic Analysis. Potential theory,
Mass transportation problems,
Quasiconformal and quasiregular mappings. Quasiconformal geometry,
PDEs associated to analytic and geometric problems in metric spaces.