GRCA(p$$ p$$) 模型的条件自加权 M$$ M$$ 估计器的渐近性及其统计推论

Pub Date : 2024-02-21 DOI:10.1111/anzs.12408
Chi Yao, Wei Yu, Xuejun Wang
{"title":"GRCA(p$$ p$$) 模型的条件自加权 M$$ M$$ 估计器的渐近性及其统计推论","authors":"Chi Yao,&nbsp;Wei Yu,&nbsp;Xuejun Wang","doi":"10.1111/anzs.12408","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Under the <math>\n <semantics>\n <mrow>\n <mi>p</mi>\n </mrow>\n <annotation>$$ p $$</annotation>\n </semantics></math>-order generalised random coefficient autoregressive (GRCA(<math>\n <semantics>\n <mrow>\n <mi>p</mi>\n </mrow>\n <annotation>$$ p $$</annotation>\n </semantics></math>)) model with random coefficients <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>Φ</mi>\n </mrow>\n <mrow>\n <mi>t</mi>\n </mrow>\n </msub>\n <mo>,</mo>\n </mrow>\n <annotation>$$ {\\boldsymbol{\\Phi}}_t, $$</annotation>\n </semantics></math> we propose a conditional self-weighted <math>\n <semantics>\n <mrow>\n <mi>M</mi>\n </mrow>\n <annotation>$$ M $$</annotation>\n </semantics></math> estimator of <math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <msub>\n <mrow>\n <mi>Φ</mi>\n </mrow>\n <mrow>\n <mi>t</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ \\mathrm{E}{\\boldsymbol{\\Phi}}_t $$</annotation>\n </semantics></math>. We investigate the asymptotic normality of this estimator with possibly heavy-tailed random variables. Furthermore, a Wald test statistic is constructed for the linear restriction on the parameters. In addition, the simulation experiments are carried out to assess the finite sample performance of theoretical results. Finally, a real data analysis about the increase (%) in the number of construction projects this year over the same period of last year is provided.</p>\n </div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics for the conditional self-weighted \\n \\n \\n M\\n \\n $$ M $$\\n estimator of GRCA(\\n \\n \\n p\\n \\n $$ p $$\\n ) models and its statistical inference\",\"authors\":\"Chi Yao,&nbsp;Wei Yu,&nbsp;Xuejun Wang\",\"doi\":\"10.1111/anzs.12408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Under the <math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n <annotation>$$ p $$</annotation>\\n </semantics></math>-order generalised random coefficient autoregressive (GRCA(<math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n <annotation>$$ p $$</annotation>\\n </semantics></math>)) model with random coefficients <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>Φ</mi>\\n </mrow>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n </mrow>\\n <annotation>$$ {\\\\boldsymbol{\\\\Phi}}_t, $$</annotation>\\n </semantics></math> we propose a conditional self-weighted <math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n </mrow>\\n <annotation>$$ M $$</annotation>\\n </semantics></math> estimator of <math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <msub>\\n <mrow>\\n <mi>Φ</mi>\\n </mrow>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ \\\\mathrm{E}{\\\\boldsymbol{\\\\Phi}}_t $$</annotation>\\n </semantics></math>. We investigate the asymptotic normality of this estimator with possibly heavy-tailed random variables. Furthermore, a Wald test statistic is constructed for the linear restriction on the parameters. In addition, the simulation experiments are carried out to assess the finite sample performance of theoretical results. Finally, a real data analysis about the increase (%) in the number of construction projects this year over the same period of last year is provided.</p>\\n </div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要在具有随机系数的-阶广义随机系数自回归(GRCA())模型下,我们提出了一个条件自加权估计器。 我们研究了该估计器在可能存在重尾随机变量的情况下的渐近正态性。此外,我们还构建了参数线性限制的 Wald 检验统计量。此外,我们还进行了模拟实验,以评估理论结果的有限样本性能。最后,提供了有关今年建筑项目数量比去年同期增长(%)的真实数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Asymptotics for the conditional self-weighted M $$ M $$ estimator of GRCA( p $$ p $$ ) models and its statistical inference

Under the p $$ p $$ -order generalised random coefficient autoregressive (GRCA( p $$ p $$ )) model with random coefficients Φ t , $$ {\boldsymbol{\Phi}}_t, $$ we propose a conditional self-weighted M $$ M $$ estimator of E Φ t $$ \mathrm{E}{\boldsymbol{\Phi}}_t $$ . We investigate the asymptotic normality of this estimator with possibly heavy-tailed random variables. Furthermore, a Wald test statistic is constructed for the linear restriction on the parameters. In addition, the simulation experiments are carried out to assess the finite sample performance of theoretical results. Finally, a real data analysis about the increase (%) in the number of construction projects this year over the same period of last year is provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信