虚拟现实中的感觉运动适应:指令和身体表征会影响后效吗?

IF 4.4 3区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Svetlana Wähnert, Ulrike Schäfer
{"title":"虚拟现实中的感觉运动适应:指令和身体表征会影响后效吗?","authors":"Svetlana Wähnert, Ulrike Schäfer","doi":"10.1007/s10055-024-00957-6","DOIUrl":null,"url":null,"abstract":"<p>Perturbations in virtual reality (VR) lead to sensorimotor adaptation during exposure, but also to aftereffects once the perturbation is no longer present. An experiment was conducted to investigate the impact of different task instructions and body representation on the magnitude and the persistence of these aftereffects. Participants completed the paradigm of sensorimotor adaptation in VR. They were assigned to one of three groups: control group, misinformation group or arrow group. The misinformation group and the arrow group were each compared to the control group to examine the effects of instruction and body representation. The misinformation group was given the incorrect instruction that in addition to the perturbation, a random error component was also built into the movement. The arrow group was presented a virtual arrow instead of a virtual hand. It was hypothesised that both would lead to a lower magnitude and persistence of the aftereffect because the object identity between hand and virtual representation would be reduced, and errors would be more strongly attributed to external causes. Misinformation led to lower persistence, while the arrow group showed no significant differences compared to the control group. The results suggest that information about the accuracy of the VR system can influence the aftereffects, which should be considered when developing VR instructions. No effects of body representation were found. One possible explanation is that the manipulated difference between abstract and realistic body representation was too small in terms of object identity.</p>","PeriodicalId":23727,"journal":{"name":"Virtual Reality","volume":"43 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensorimotor adaptation in virtual reality: Do instructions and body representation influence aftereffects?\",\"authors\":\"Svetlana Wähnert, Ulrike Schäfer\",\"doi\":\"10.1007/s10055-024-00957-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Perturbations in virtual reality (VR) lead to sensorimotor adaptation during exposure, but also to aftereffects once the perturbation is no longer present. An experiment was conducted to investigate the impact of different task instructions and body representation on the magnitude and the persistence of these aftereffects. Participants completed the paradigm of sensorimotor adaptation in VR. They were assigned to one of three groups: control group, misinformation group or arrow group. The misinformation group and the arrow group were each compared to the control group to examine the effects of instruction and body representation. The misinformation group was given the incorrect instruction that in addition to the perturbation, a random error component was also built into the movement. The arrow group was presented a virtual arrow instead of a virtual hand. It was hypothesised that both would lead to a lower magnitude and persistence of the aftereffect because the object identity between hand and virtual representation would be reduced, and errors would be more strongly attributed to external causes. Misinformation led to lower persistence, while the arrow group showed no significant differences compared to the control group. The results suggest that information about the accuracy of the VR system can influence the aftereffects, which should be considered when developing VR instructions. No effects of body representation were found. One possible explanation is that the manipulated difference between abstract and realistic body representation was too small in terms of object identity.</p>\",\"PeriodicalId\":23727,\"journal\":{\"name\":\"Virtual Reality\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virtual Reality\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10055-024-00957-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10055-024-00957-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

虚拟现实(VR)中的扰动会导致接触过程中的感觉运动适应,但一旦扰动不再存在,也会产生后遗效应。我们进行了一项实验,研究不同的任务指令和身体表征对这些后遗效应的程度和持续性的影响。参与者在 VR 中完成了传感器运动适应范例。他们被分配到三组中的一组:对照组、错误信息组或箭头组。错误信息组和箭头组分别与对照组进行比较,以考察指令和身体表征的效果。错误信息组得到的是错误指令,除了扰动外,还在动作中加入了随机误差成分。箭头组得到的是虚拟箭头而不是虚拟手。假设这两种情况都会导致后效的程度和持续性降低,因为手和虚拟表征之间的物体识别性会降低,错误会更多地归因于外部原因。错误信息导致了较低的持续性,而箭头组与对照组相比没有显著差异。结果表明,有关 VR 系统准确性的信息会影响后效,在制定 VR 指令时应考虑到这一点。没有发现身体表征的影响。一种可能的解释是,就物体识别而言,抽象和真实的身体表征之间的操作差异太小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sensorimotor adaptation in virtual reality: Do instructions and body representation influence aftereffects?

Sensorimotor adaptation in virtual reality: Do instructions and body representation influence aftereffects?

Perturbations in virtual reality (VR) lead to sensorimotor adaptation during exposure, but also to aftereffects once the perturbation is no longer present. An experiment was conducted to investigate the impact of different task instructions and body representation on the magnitude and the persistence of these aftereffects. Participants completed the paradigm of sensorimotor adaptation in VR. They were assigned to one of three groups: control group, misinformation group or arrow group. The misinformation group and the arrow group were each compared to the control group to examine the effects of instruction and body representation. The misinformation group was given the incorrect instruction that in addition to the perturbation, a random error component was also built into the movement. The arrow group was presented a virtual arrow instead of a virtual hand. It was hypothesised that both would lead to a lower magnitude and persistence of the aftereffect because the object identity between hand and virtual representation would be reduced, and errors would be more strongly attributed to external causes. Misinformation led to lower persistence, while the arrow group showed no significant differences compared to the control group. The results suggest that information about the accuracy of the VR system can influence the aftereffects, which should be considered when developing VR instructions. No effects of body representation were found. One possible explanation is that the manipulated difference between abstract and realistic body representation was too small in terms of object identity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Virtual Reality
Virtual Reality COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
8.30
自引率
14.30%
发文量
95
审稿时长
>12 weeks
期刊介绍: The journal, established in 1995, publishes original research in Virtual Reality, Augmented and Mixed Reality that shapes and informs the community. The multidisciplinary nature of the field means that submissions are welcomed on a wide range of topics including, but not limited to: Original research studies of Virtual Reality, Augmented Reality, Mixed Reality and real-time visualization applications Development and evaluation of systems, tools, techniques and software that advance the field, including: Display technologies, including Head Mounted Displays, simulators and immersive displays Haptic technologies, including novel devices, interaction and rendering Interaction management, including gesture control, eye gaze, biosensors and wearables Tracking technologies VR/AR/MR in medicine, including training, surgical simulation, rehabilitation, and tissue/organ modelling. Impactful and original applications and studies of VR/AR/MR’s utility in areas such as manufacturing, business, telecommunications, arts, education, design, entertainment and defence Research demonstrating new techniques and approaches to designing, building and evaluating virtual and augmented reality systems Original research studies assessing the social, ethical, data or legal aspects of VR/AR/MR.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信