{"title":"统一稳健估算","authors":"Zhu Wang","doi":"10.1111/anzs.12409","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Robust estimation is primarily concerned with providing reliable parameter estimates in the presence of outliers. Numerous robust loss functions have been proposed in regression and classification, along with various computing algorithms. In modern penalised generalised linear models (GLMs), however, there is limited research on robust estimation that can provide weights to determine the outlier status of the observations. This article proposes a unified framework based on a large family of loss functions, a composite of concave and convex functions (CC-family). Properties of the CC-family are investigated, and CC-estimation is innovatively conducted via the iteratively reweighted convex optimisation (IRCO), which is a generalisation of the iteratively reweighted least squares in robust linear regression. For robust GLM, the IRCO becomes the iteratively reweighted GLM. The unified framework contains penalised estimation and robust support vector machine (SVM) and is demonstrated with a variety of data applications.</p>\n </div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified robust estimation\",\"authors\":\"Zhu Wang\",\"doi\":\"10.1111/anzs.12409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Robust estimation is primarily concerned with providing reliable parameter estimates in the presence of outliers. Numerous robust loss functions have been proposed in regression and classification, along with various computing algorithms. In modern penalised generalised linear models (GLMs), however, there is limited research on robust estimation that can provide weights to determine the outlier status of the observations. This article proposes a unified framework based on a large family of loss functions, a composite of concave and convex functions (CC-family). Properties of the CC-family are investigated, and CC-estimation is innovatively conducted via the iteratively reweighted convex optimisation (IRCO), which is a generalisation of the iteratively reweighted least squares in robust linear regression. For robust GLM, the IRCO becomes the iteratively reweighted GLM. The unified framework contains penalised estimation and robust support vector machine (SVM) and is demonstrated with a variety of data applications.</p>\\n </div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要稳健估计主要涉及在存在异常值的情况下提供可靠的参数估计。在回归和分类中提出了许多稳健损失函数以及各种计算算法。然而,在现代惩罚性广义线性模型(GLM)中,能提供权重以确定观测值离群状态的稳健估计研究还很有限。本文提出了一个基于损失函数大家族的统一框架,即凹函数和凸函数的复合体(CC-family)。本文研究了 CC 系列的特性,并通过迭代加权凸优化(IRCO)创新性地进行了 CC 估计,IRCO 是稳健线性回归中迭代加权最小二乘法的概括。对于稳健 GLM,IRCO 成为迭代重权 GLM。该统一框架包含惩罚估计和稳健支持向量机(SVM),并通过各种数据应用进行了演示。
Robust estimation is primarily concerned with providing reliable parameter estimates in the presence of outliers. Numerous robust loss functions have been proposed in regression and classification, along with various computing algorithms. In modern penalised generalised linear models (GLMs), however, there is limited research on robust estimation that can provide weights to determine the outlier status of the observations. This article proposes a unified framework based on a large family of loss functions, a composite of concave and convex functions (CC-family). Properties of the CC-family are investigated, and CC-estimation is innovatively conducted via the iteratively reweighted convex optimisation (IRCO), which is a generalisation of the iteratively reweighted least squares in robust linear regression. For robust GLM, the IRCO becomes the iteratively reweighted GLM. The unified framework contains penalised estimation and robust support vector machine (SVM) and is demonstrated with a variety of data applications.