关于开区间方程凸解的说明

IF 0.9 3区 数学 Q2 MATHEMATICS
Chaitanya Gopalakrishna
{"title":"关于开区间方程凸解的说明","authors":"Chaitanya Gopalakrishna","doi":"10.1007/s00010-024-01038-4","DOIUrl":null,"url":null,"abstract":"<div><p>The note is concerned with the functional equation </p><div><div><span>$$\\begin{aligned} \\lambda _1H_1(f(x))+\\lambda _2H_2(f^2(x))+\\cdots +\\lambda _nH_n(f^n(x))=F(x), \\end{aligned}$$</span></div></div><p>which is a generalised form of the so-called polynomial-like iterative equation. We investigate the existence of nondecreasing convex (both usual and higher order) solutions to this equation on open intervals using the Schauder fixed point theorem. The results supplement those proved by Trif (Aquat Math, 79:315–327, 2010) for the polynomial-like iterative equation by generalising them to a greater extent. This assertion is supported by some examples illustrating their applicability.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"98 4","pages":"1151 - 1159"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on convex solutions to an equation on open intervals\",\"authors\":\"Chaitanya Gopalakrishna\",\"doi\":\"10.1007/s00010-024-01038-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The note is concerned with the functional equation </p><div><div><span>$$\\\\begin{aligned} \\\\lambda _1H_1(f(x))+\\\\lambda _2H_2(f^2(x))+\\\\cdots +\\\\lambda _nH_n(f^n(x))=F(x), \\\\end{aligned}$$</span></div></div><p>which is a generalised form of the so-called polynomial-like iterative equation. We investigate the existence of nondecreasing convex (both usual and higher order) solutions to this equation on open intervals using the Schauder fixed point theorem. The results supplement those proved by Trif (Aquat Math, 79:315–327, 2010) for the polynomial-like iterative equation by generalising them to a greater extent. This assertion is supported by some examples illustrating their applicability.</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"98 4\",\"pages\":\"1151 - 1159\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-024-01038-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01038-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本说明涉及函数方程 $$\begin{aligned}\lambda _1H_1(f(x))+\lambda _2H_2(f^2(x))+\cdots +\lambda _nH_n(f^n(x))=F(x), \end{aligned}$$这是所谓多项式迭代方程的一般形式。我们利用 Schauder 定点定理研究了该方程在开区间上的非递减凸解(通常解和高阶解)的存在性。这些结果补充了 Trif(Aquat Math,79:315-327,2010 年)针对类多项式迭代方程证明的结果,在更大程度上对其进行了推广。一些例子说明了这些结果的适用性,从而支持了这一论断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on convex solutions to an equation on open intervals

The note is concerned with the functional equation

$$\begin{aligned} \lambda _1H_1(f(x))+\lambda _2H_2(f^2(x))+\cdots +\lambda _nH_n(f^n(x))=F(x), \end{aligned}$$

which is a generalised form of the so-called polynomial-like iterative equation. We investigate the existence of nondecreasing convex (both usual and higher order) solutions to this equation on open intervals using the Schauder fixed point theorem. The results supplement those proved by Trif (Aquat Math, 79:315–327, 2010) for the polynomial-like iterative equation by generalising them to a greater extent. This assertion is supported by some examples illustrating their applicability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信