{"title":"存在静态和动态障碍物时四旋翼飞行器蜂群的预测搜索模型","authors":"Giray Önür, Ali Emre Turgut, Erol Şahin","doi":"10.1007/s11721-024-00234-x","DOIUrl":null,"url":null,"abstract":"<p>One of the main challenges in swarm robotics is to achieve robust and scalable flocking, such that large numbers of robots can move together in a coordinated and cohesive manner while avoiding obstacles or threats. Flocking models in swarm robotic systems typically use reactive behaviors, such as cohesion, alignment, and avoidance. The use of potential fields has enabled the derivation of reactive control laws using obstacles and neighboring robots as sources of force for flocking. However, reactive behaviors, especially when a multitude of them are simultaneously active, as in the case of flocking, are prone to cause collisions or inefficient motion within the flock due to its short-sighted approach. Approaches that aimed to generate smoother and optimum flocking, such as the use of model predictive control, would either require centralized coordination, or distributed coordination which requires low-latency and high-bandwidth communication requirements within the swarm as well as high computational resources. In this paper, we present a predictive search model that can generate smooth and safe flocking of robotic swarms in the presence of obstacles by taking into account the predicted states of other robots in a computationally efficient way. We tested the proposed model in environments with static and dynamic obstacles and compared its performance with a potential field flocking model in simulation. The results show that the predictive search model can generate smoother and faster flocking in swarm robotic systems in the presence of static and dynamic obstacles. Furthermore, we tested the predictive search model with different numbers of robots in environments with static obstacles in simulations and demonstrated that it is scalable to large swarm sizes. The performance of the predictive search model is also validated on a swarm of six quadcopters indoors in the presence of static and dynamic obstacles.</p>","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"155 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive search model of flocking for quadcopter swarm in the presence of static and dynamic obstacles\",\"authors\":\"Giray Önür, Ali Emre Turgut, Erol Şahin\",\"doi\":\"10.1007/s11721-024-00234-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One of the main challenges in swarm robotics is to achieve robust and scalable flocking, such that large numbers of robots can move together in a coordinated and cohesive manner while avoiding obstacles or threats. Flocking models in swarm robotic systems typically use reactive behaviors, such as cohesion, alignment, and avoidance. The use of potential fields has enabled the derivation of reactive control laws using obstacles and neighboring robots as sources of force for flocking. However, reactive behaviors, especially when a multitude of them are simultaneously active, as in the case of flocking, are prone to cause collisions or inefficient motion within the flock due to its short-sighted approach. Approaches that aimed to generate smoother and optimum flocking, such as the use of model predictive control, would either require centralized coordination, or distributed coordination which requires low-latency and high-bandwidth communication requirements within the swarm as well as high computational resources. In this paper, we present a predictive search model that can generate smooth and safe flocking of robotic swarms in the presence of obstacles by taking into account the predicted states of other robots in a computationally efficient way. We tested the proposed model in environments with static and dynamic obstacles and compared its performance with a potential field flocking model in simulation. The results show that the predictive search model can generate smoother and faster flocking in swarm robotic systems in the presence of static and dynamic obstacles. Furthermore, we tested the predictive search model with different numbers of robots in environments with static obstacles in simulations and demonstrated that it is scalable to large swarm sizes. The performance of the predictive search model is also validated on a swarm of six quadcopters indoors in the presence of static and dynamic obstacles.</p>\",\"PeriodicalId\":51284,\"journal\":{\"name\":\"Swarm Intelligence\",\"volume\":\"155 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11721-024-00234-x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11721-024-00234-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Predictive search model of flocking for quadcopter swarm in the presence of static and dynamic obstacles
One of the main challenges in swarm robotics is to achieve robust and scalable flocking, such that large numbers of robots can move together in a coordinated and cohesive manner while avoiding obstacles or threats. Flocking models in swarm robotic systems typically use reactive behaviors, such as cohesion, alignment, and avoidance. The use of potential fields has enabled the derivation of reactive control laws using obstacles and neighboring robots as sources of force for flocking. However, reactive behaviors, especially when a multitude of them are simultaneously active, as in the case of flocking, are prone to cause collisions or inefficient motion within the flock due to its short-sighted approach. Approaches that aimed to generate smoother and optimum flocking, such as the use of model predictive control, would either require centralized coordination, or distributed coordination which requires low-latency and high-bandwidth communication requirements within the swarm as well as high computational resources. In this paper, we present a predictive search model that can generate smooth and safe flocking of robotic swarms in the presence of obstacles by taking into account the predicted states of other robots in a computationally efficient way. We tested the proposed model in environments with static and dynamic obstacles and compared its performance with a potential field flocking model in simulation. The results show that the predictive search model can generate smoother and faster flocking in swarm robotic systems in the presence of static and dynamic obstacles. Furthermore, we tested the predictive search model with different numbers of robots in environments with static obstacles in simulations and demonstrated that it is scalable to large swarm sizes. The performance of the predictive search model is also validated on a swarm of six quadcopters indoors in the presence of static and dynamic obstacles.
期刊介绍:
Swarm Intelligence is the principal peer-reviewed publication dedicated to reporting on research
and developments in the multidisciplinary field of swarm intelligence. The journal publishes
original research articles and occasional review articles on theoretical, experimental and/or
practical aspects of swarm intelligence. All articles are published both in print and in electronic
form. There are no page charges for publication. Swarm Intelligence is published quarterly.
The field of swarm intelligence deals with systems composed of many individuals that coordinate
using decentralized control and self-organization. In particular, it focuses on the collective
behaviors that result from the local interactions of the individuals with each other and with their
environment. It is a fast-growing field that encompasses the efforts of researchers in multiple
disciplines, ranging from ethology and social science to operations research and computer
engineering.
Swarm Intelligence will report on advances in the understanding and utilization of swarm
intelligence systems, that is, systems that are based on the principles of swarm intelligence. The
following subjects are of particular interest to the journal:
• modeling and analysis of collective biological systems such as social insect colonies, flocking
vertebrates, and human crowds as well as any other swarm intelligence systems;
• application of biological swarm intelligence models to real-world problems such as distributed
computing, data clustering, graph partitioning, optimization and decision making;
• theoretical and empirical research in ant colony optimization, particle swarm optimization,
swarm robotics, and other swarm intelligence algorithms.