单区间和双区间普查模型中孵化时间分布的估计

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Piet Groeneboom
{"title":"单区间和双区间普查模型中孵化时间分布的估计","authors":"Piet Groeneboom","doi":"10.1111/stan.12335","DOIUrl":null,"url":null,"abstract":"We analyze nonparametric estimators for the distribution function of the incubation time in the singly and doubly interval censoring model. The classical approach is to use parametric families like Weibull, log‐normal or gamma distributions in the estimation procedure. We propose nonparametric estimates for functions of the observations, which stay closer to the data than the classical parametric methods. We also give explicit limit distributions for discrete versions of the models and apply this to compute confidence intervals. The methods complement the analysis of the continuous model in Groeneboom (2021, 2023). <jats:styled-content>R</jats:styled-content> scripts for computation of the estimates are provided in Groeneboom (2020).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of the incubation time distribution in the singly and doubly interval censored model\",\"authors\":\"Piet Groeneboom\",\"doi\":\"10.1111/stan.12335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze nonparametric estimators for the distribution function of the incubation time in the singly and doubly interval censoring model. The classical approach is to use parametric families like Weibull, log‐normal or gamma distributions in the estimation procedure. We propose nonparametric estimates for functions of the observations, which stay closer to the data than the classical parametric methods. We also give explicit limit distributions for discrete versions of the models and apply this to compute confidence intervals. The methods complement the analysis of the continuous model in Groeneboom (2021, 2023). <jats:styled-content>R</jats:styled-content> scripts for computation of the estimates are provided in Groeneboom (2020).\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12335\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12335","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了单区间和双区间普查模型中孵化时间分布函数的非参数估计器。经典的方法是在估计过程中使用参数族,如 Weibull、log-normal 或 gamma 分布。我们提出了观测值函数的非参数估计,它比传统的参数方法更接近数据。我们还给出了离散模型的明确极限分布,并将其用于计算置信区间。这些方法是对 Groeneboom (2021, 2023) 中连续模型分析的补充。计算估计值的 R 脚本在 Groeneboom (2020) 中提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of the incubation time distribution in the singly and doubly interval censored model
We analyze nonparametric estimators for the distribution function of the incubation time in the singly and doubly interval censoring model. The classical approach is to use parametric families like Weibull, log‐normal or gamma distributions in the estimation procedure. We propose nonparametric estimates for functions of the observations, which stay closer to the data than the classical parametric methods. We also give explicit limit distributions for discrete versions of the models and apply this to compute confidence intervals. The methods complement the analysis of the continuous model in Groeneboom (2021, 2023). R scripts for computation of the estimates are provided in Groeneboom (2020).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信