{"title":"中继辅助空-空-地物联网系统的分布式传输与优化","authors":"Ying Sun","doi":"10.1186/s13634-024-01123-5","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the integration of relay-assisted Internet of Things (IoT) systems, focusing on the use of multiple relays to enhance the system performance. The central metric of interest in this study is system outage probability, evaluated in terms of latency. Our research provides a comprehensive analysis of system outage probability, considering different relay selection criteria to optimize the system’s transmission performance. Three relay selection strategies are employed to enhance the system transmission performance. Specifically, the first strategy, optimal relay selection, aims to identify the relay that minimizes the latency and maximizes the data transmission reliability. The second approach, partial relay selection, focuses on selecting a subset of relays strategically to balance the system resources and achieve the latency reduction. The third strategy, random relay selection, explores the potential of opportunistic relay selection without prior knowledge. Through a rigorous investigation, our paper evaluates the impact of these relay selection criteria on the performance of relay-assisted edge computing systems. By assessing the system outage probability in relation to latency, we provide valuable insights into the trade-offs and advantages associated with each selection strategy. Our findings contribute to the design and optimization of reliable and efficient edge computing systems, with implications for various applications, including the IoT and intelligent data processing.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"142 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed transmission and optimization of relay-assisted space-air-ground IoT systems\",\"authors\":\"Ying Sun\",\"doi\":\"10.1186/s13634-024-01123-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the integration of relay-assisted Internet of Things (IoT) systems, focusing on the use of multiple relays to enhance the system performance. The central metric of interest in this study is system outage probability, evaluated in terms of latency. Our research provides a comprehensive analysis of system outage probability, considering different relay selection criteria to optimize the system’s transmission performance. Three relay selection strategies are employed to enhance the system transmission performance. Specifically, the first strategy, optimal relay selection, aims to identify the relay that minimizes the latency and maximizes the data transmission reliability. The second approach, partial relay selection, focuses on selecting a subset of relays strategically to balance the system resources and achieve the latency reduction. The third strategy, random relay selection, explores the potential of opportunistic relay selection without prior knowledge. Through a rigorous investigation, our paper evaluates the impact of these relay selection criteria on the performance of relay-assisted edge computing systems. By assessing the system outage probability in relation to latency, we provide valuable insights into the trade-offs and advantages associated with each selection strategy. Our findings contribute to the design and optimization of reliable and efficient edge computing systems, with implications for various applications, including the IoT and intelligent data processing.</p>\",\"PeriodicalId\":11816,\"journal\":{\"name\":\"EURASIP Journal on Advances in Signal Processing\",\"volume\":\"142 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-024-01123-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-024-01123-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Distributed transmission and optimization of relay-assisted space-air-ground IoT systems
This paper investigates the integration of relay-assisted Internet of Things (IoT) systems, focusing on the use of multiple relays to enhance the system performance. The central metric of interest in this study is system outage probability, evaluated in terms of latency. Our research provides a comprehensive analysis of system outage probability, considering different relay selection criteria to optimize the system’s transmission performance. Three relay selection strategies are employed to enhance the system transmission performance. Specifically, the first strategy, optimal relay selection, aims to identify the relay that minimizes the latency and maximizes the data transmission reliability. The second approach, partial relay selection, focuses on selecting a subset of relays strategically to balance the system resources and achieve the latency reduction. The third strategy, random relay selection, explores the potential of opportunistic relay selection without prior knowledge. Through a rigorous investigation, our paper evaluates the impact of these relay selection criteria on the performance of relay-assisted edge computing systems. By assessing the system outage probability in relation to latency, we provide valuable insights into the trade-offs and advantages associated with each selection strategy. Our findings contribute to the design and optimization of reliable and efficient edge computing systems, with implications for various applications, including the IoT and intelligent data processing.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.