{"title":"利用云计算进行统一集合联合学习,在高能效无线传感器网络中进行在线异常检测","authors":"S. Gayathri, D. Surendran","doi":"10.1186/s13677-024-00595-y","DOIUrl":null,"url":null,"abstract":"Anomaly detection in Wireless Sensor Networks (WSNs) is critical for their reliable and secure operation. Optimizing resource efficiency is crucial for reducing energy consumption. Two new algorithms developed for anomaly detection in WSNs—Ensemble Federated Learning (EFL) with Cloud Integration and Online Anomaly Detection with Energy-Efficient Techniques (OAD-EE) with Cloud-based Model Aggregation. EFL with Cloud Integration uses ensemble methods and federated learning to enhance detection accuracy and data privacy. OAD-EE with Cloud-based Model Aggregation uses online learning and energy-efficient techniques to conserve energy on resource-constrained sensor nodes. By combining EFL and OAD-EE, a comprehensive and efficient framework for anomaly detection in WSNs can be created. Experimental results show that EFL with Cloud Integration achieves the highest detection accuracy, while OAD-EE with Cloud-based Model Aggregation has the lowest energy consumption and fastest detection time among all algorithms, making it suitable for real-time applications. The unified algorithm contributes to the system's overall efficiency, scalability, and real-time response. By integrating cloud computing, this algorithm opens new avenues for advanced WSN applications. These promising approaches for anomaly detection in resource constrained and large-scale WSNs are beneficial for industrial applications.","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified ensemble federated learning with cloud computing for online anomaly detection in energy-efficient wireless sensor networks\",\"authors\":\"S. Gayathri, D. Surendran\",\"doi\":\"10.1186/s13677-024-00595-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection in Wireless Sensor Networks (WSNs) is critical for their reliable and secure operation. Optimizing resource efficiency is crucial for reducing energy consumption. Two new algorithms developed for anomaly detection in WSNs—Ensemble Federated Learning (EFL) with Cloud Integration and Online Anomaly Detection with Energy-Efficient Techniques (OAD-EE) with Cloud-based Model Aggregation. EFL with Cloud Integration uses ensemble methods and federated learning to enhance detection accuracy and data privacy. OAD-EE with Cloud-based Model Aggregation uses online learning and energy-efficient techniques to conserve energy on resource-constrained sensor nodes. By combining EFL and OAD-EE, a comprehensive and efficient framework for anomaly detection in WSNs can be created. Experimental results show that EFL with Cloud Integration achieves the highest detection accuracy, while OAD-EE with Cloud-based Model Aggregation has the lowest energy consumption and fastest detection time among all algorithms, making it suitable for real-time applications. The unified algorithm contributes to the system's overall efficiency, scalability, and real-time response. By integrating cloud computing, this algorithm opens new avenues for advanced WSN applications. These promising approaches for anomaly detection in resource constrained and large-scale WSNs are beneficial for industrial applications.\",\"PeriodicalId\":501257,\"journal\":{\"name\":\"Journal of Cloud Computing\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13677-024-00595-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13677-024-00595-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unified ensemble federated learning with cloud computing for online anomaly detection in energy-efficient wireless sensor networks
Anomaly detection in Wireless Sensor Networks (WSNs) is critical for their reliable and secure operation. Optimizing resource efficiency is crucial for reducing energy consumption. Two new algorithms developed for anomaly detection in WSNs—Ensemble Federated Learning (EFL) with Cloud Integration and Online Anomaly Detection with Energy-Efficient Techniques (OAD-EE) with Cloud-based Model Aggregation. EFL with Cloud Integration uses ensemble methods and federated learning to enhance detection accuracy and data privacy. OAD-EE with Cloud-based Model Aggregation uses online learning and energy-efficient techniques to conserve energy on resource-constrained sensor nodes. By combining EFL and OAD-EE, a comprehensive and efficient framework for anomaly detection in WSNs can be created. Experimental results show that EFL with Cloud Integration achieves the highest detection accuracy, while OAD-EE with Cloud-based Model Aggregation has the lowest energy consumption and fastest detection time among all algorithms, making it suitable for real-time applications. The unified algorithm contributes to the system's overall efficiency, scalability, and real-time response. By integrating cloud computing, this algorithm opens new avenues for advanced WSN applications. These promising approaches for anomaly detection in resource constrained and large-scale WSNs are beneficial for industrial applications.