泊松几何中的数值方法及其在力学中的应用

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Oscar Cosserat, Camille Laurent-Gengoux, Vladimir Salnikov
{"title":"泊松几何中的数值方法及其在力学中的应用","authors":"Oscar Cosserat, Camille Laurent-Gengoux, Vladimir Salnikov","doi":"10.1177/10812865231217096","DOIUrl":null,"url":null,"abstract":"We recall the question of geometric integrators in the context of Poisson geometry and explain their construction. These Poisson integrators are tested in some mechanical examples. Their properties are illustrated numerically and compared to traditional methods.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"5 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical methods in Poisson geometry and their application to mechanics\",\"authors\":\"Oscar Cosserat, Camille Laurent-Gengoux, Vladimir Salnikov\",\"doi\":\"10.1177/10812865231217096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We recall the question of geometric integrators in the context of Poisson geometry and explain their construction. These Poisson integrators are tested in some mechanical examples. Their properties are illustrated numerically and compared to traditional methods.\",\"PeriodicalId\":49854,\"journal\":{\"name\":\"Mathematics and Mechanics of Solids\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10812865231217096\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865231217096","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们回顾了泊松几何背景下的几何积分器问题,并解释了它们的构造。这些泊松积分器在一些机械示例中进行了测试。我们用数字说明了它们的特性,并与传统方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical methods in Poisson geometry and their application to mechanics
We recall the question of geometric integrators in the context of Poisson geometry and explain their construction. These Poisson integrators are tested in some mechanical examples. Their properties are illustrated numerically and compared to traditional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Mechanics of Solids
Mathematics and Mechanics of Solids 工程技术-材料科学:综合
CiteScore
4.80
自引率
19.20%
发文量
159
审稿时长
1 months
期刊介绍: Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science. The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信