利用哨兵-2 号卫星和空中客车 Vision-1 号卫星的数据融合进行基于随机森林和人工神经网络的海啸森林分类:巴基斯坦 Garhi Chandan 案例研究

IF 1.7 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Shabnam Mateen, Narissara Nuthammachot, Kuaanan Techato
{"title":"利用哨兵-2 号卫星和空中客车 Vision-1 号卫星的数据融合进行基于随机森林和人工神经网络的海啸森林分类:巴基斯坦 Garhi Chandan 案例研究","authors":"Shabnam Mateen, Narissara Nuthammachot, Kuaanan Techato","doi":"10.1515/geo-2022-0595","DOIUrl":null,"url":null,"abstract":"This article proposes random forest algorithm (RFA), multi-layer perception (MLP) artificial neural network (ANN), and support vector machine (SVM) method for classifying the fused data of Sentinel-2, Landsat-8, and Airbus Vision-1 satellites for the years 2016 and 2023. The first variant of fusion is performed for Sentinel-2 and Landsat-8 data to sharpen it to 10 m spatial resolution, while in the second case, Sentinel-2 and Airbus Vision-1 data are fused together to achieve a spatial resolution of 3.48 m. MLP-ANN, SVM, and RFA methods are applied to the sharpened dataset for the years 2023 and 2016 having spatial resolutions of 3.48 and 10 m, respectively, and a detailed comparative analysis is performed. Google earth engine is utilized for ground data validation of the classified samples. An enhanced convergence time of 100 iterations was achieved using MLP-ANN for the classification of the dataset at 3.48 m spatial resolution, while the same method took 300 iterations with the dataset at 10 m spatial resolution to achieve a minimum limit Kappa hat score of 0.85. With 10 m spatial resolution, the MLP-ANN achieved an overall accuracy of 96.6% and a Kappa hat score of 0.94, while at 3.48 m spatial resolution, the aforementioned scores are enhanced to 98.5% and 0.97, respectively. Similarly, with 10 m spatial resolution, the RFA achieved an overall accuracy of 92.6% and a Kappa hat score of 0.88, while at 3.48 m spatial resolution, the abovementioned scores are enhanced to 96.5 and 0.95% respectively. In view of the forgoing, the MLP-ANN showed better performance as compared to the RFA method.","PeriodicalId":48712,"journal":{"name":"Open Geosciences","volume":"6 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random forest and artificial neural network-based tsunami forests classification using data fusion of Sentinel-2 and Airbus Vision-1 satellites: A case study of Garhi Chandan, Pakistan\",\"authors\":\"Shabnam Mateen, Narissara Nuthammachot, Kuaanan Techato\",\"doi\":\"10.1515/geo-2022-0595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes random forest algorithm (RFA), multi-layer perception (MLP) artificial neural network (ANN), and support vector machine (SVM) method for classifying the fused data of Sentinel-2, Landsat-8, and Airbus Vision-1 satellites for the years 2016 and 2023. The first variant of fusion is performed for Sentinel-2 and Landsat-8 data to sharpen it to 10 m spatial resolution, while in the second case, Sentinel-2 and Airbus Vision-1 data are fused together to achieve a spatial resolution of 3.48 m. MLP-ANN, SVM, and RFA methods are applied to the sharpened dataset for the years 2023 and 2016 having spatial resolutions of 3.48 and 10 m, respectively, and a detailed comparative analysis is performed. Google earth engine is utilized for ground data validation of the classified samples. An enhanced convergence time of 100 iterations was achieved using MLP-ANN for the classification of the dataset at 3.48 m spatial resolution, while the same method took 300 iterations with the dataset at 10 m spatial resolution to achieve a minimum limit Kappa hat score of 0.85. With 10 m spatial resolution, the MLP-ANN achieved an overall accuracy of 96.6% and a Kappa hat score of 0.94, while at 3.48 m spatial resolution, the aforementioned scores are enhanced to 98.5% and 0.97, respectively. Similarly, with 10 m spatial resolution, the RFA achieved an overall accuracy of 92.6% and a Kappa hat score of 0.88, while at 3.48 m spatial resolution, the abovementioned scores are enhanced to 96.5 and 0.95% respectively. In view of the forgoing, the MLP-ANN showed better performance as compared to the RFA method.\",\"PeriodicalId\":48712,\"journal\":{\"name\":\"Open Geosciences\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1515/geo-2022-0595\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1515/geo-2022-0595","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了随机森林算法(RFA)、多层感知(MLP)人工神经网络(ANN)和支持向量机(SVM)方法,用于对2016年和2023年哨兵-2号、大地遥感卫星-8号和空中客车Vision-1号卫星的融合数据进行分类。对空间分辨率分别为 3.48 米和 10 米的 2023 年和 2016 年锐化数据集应用了 MLP-ANN、SVM 和 RFA 方法,并进行了详细的比较分析。利用谷歌地球引擎对分类样本进行地面数据验证。使用 MLP-ANN 对空间分辨率为 3.48 米的数据集进行分类时,收敛时间缩短为 100 次迭代,而使用同一方法对空间分辨率为 10 米的数据集进行分类时,需要 300 次迭代才能达到 0.85 的最低限度 Kappa hat 分数。在空间分辨率为 10 米时,MLP-ANN 的总体准确率为 96.6%,Kappa hat 分数为 0.94,而在空间分辨率为 3.48 米时,上述分数分别提高到 98.5%和 0.97。同样,在空间分辨率为 10 米时,RFA 的总体准确率为 92.6%,Kappa hat 得分为 0.88,而在空间分辨率为 3.48 米时,上述得分分别提高到 96.5%和 0.95%。综上所述,与 RFA 方法相比,MLP-ANN 表现出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random forest and artificial neural network-based tsunami forests classification using data fusion of Sentinel-2 and Airbus Vision-1 satellites: A case study of Garhi Chandan, Pakistan
This article proposes random forest algorithm (RFA), multi-layer perception (MLP) artificial neural network (ANN), and support vector machine (SVM) method for classifying the fused data of Sentinel-2, Landsat-8, and Airbus Vision-1 satellites for the years 2016 and 2023. The first variant of fusion is performed for Sentinel-2 and Landsat-8 data to sharpen it to 10 m spatial resolution, while in the second case, Sentinel-2 and Airbus Vision-1 data are fused together to achieve a spatial resolution of 3.48 m. MLP-ANN, SVM, and RFA methods are applied to the sharpened dataset for the years 2023 and 2016 having spatial resolutions of 3.48 and 10 m, respectively, and a detailed comparative analysis is performed. Google earth engine is utilized for ground data validation of the classified samples. An enhanced convergence time of 100 iterations was achieved using MLP-ANN for the classification of the dataset at 3.48 m spatial resolution, while the same method took 300 iterations with the dataset at 10 m spatial resolution to achieve a minimum limit Kappa hat score of 0.85. With 10 m spatial resolution, the MLP-ANN achieved an overall accuracy of 96.6% and a Kappa hat score of 0.94, while at 3.48 m spatial resolution, the aforementioned scores are enhanced to 98.5% and 0.97, respectively. Similarly, with 10 m spatial resolution, the RFA achieved an overall accuracy of 92.6% and a Kappa hat score of 0.88, while at 3.48 m spatial resolution, the abovementioned scores are enhanced to 96.5 and 0.95% respectively. In view of the forgoing, the MLP-ANN showed better performance as compared to the RFA method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Geosciences
Open Geosciences GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
3.10
自引率
10.00%
发文量
63
审稿时长
15 weeks
期刊介绍: Open Geosciences (formerly Central European Journal of Geosciences - CEJG) is an open access, peer-reviewed journal publishing original research results from all fields of Earth Sciences such as: Atmospheric Sciences, Geology, Geophysics, Geography, Oceanography and Hydrology, Glaciology, Speleology, Volcanology, Soil Science, Palaeoecology, Geotourism, Geoinformatics, Geostatistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信