月球背面运动的简单计算

IF 1.1 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
V. V. Nesterenko
{"title":"月球背面运动的简单计算","authors":"V. V. Nesterenko","doi":"10.1002/asna.20230143","DOIUrl":null,"url":null,"abstract":"<p>A simple and clear method to calculate the averaged motion of the apsis line in the Moon orbit is proposed. The obtained result is <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mo>°</mo>\n <msup>\n <mn>1</mn>\n <mo>′</mo>\n </msup>\n <mn>1</mn>\n <msup>\n <mn>2</mn>\n <mo>′′</mo>\n </msup>\n </mrow>\n <annotation>$$ {3}^{{}^{\\circ}}{1}^{\\prime }1{2}^{\\prime \\prime } $$</annotation>\n </semantics></math> for the starry period of the Moon revolution around the Earth or <span></span><math>\n <semantics>\n <mrow>\n <mn>40</mn>\n <mo>°</mo>\n <mn>2</mn>\n <msup>\n <mn>2</mn>\n <mo>′</mo>\n </msup>\n <mn>4</mn>\n <msup>\n <mn>8</mn>\n <mo>′′</mo>\n </msup>\n </mrow>\n <annotation>$$ {40}^{{}^{\\circ}}2{2}^{\\prime }4{8}^{\\prime \\prime } $$</annotation>\n </semantics></math> per year. The modern observed value of the latter quantity is <span></span><math>\n <semantics>\n <mrow>\n <mn>40</mn>\n <mo>°</mo>\n <mn>4</mn>\n <msup>\n <mn>1</mn>\n <mo>′</mo>\n </msup>\n </mrow>\n <annotation>$$ {40}^{{}^{\\circ}}4{1}^{\\prime } $$</annotation>\n </semantics></math> per year. In “Principia” Newton derived <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>°</mo>\n <mn>3</mn>\n <msup>\n <mn>1</mn>\n <mo>′</mo>\n </msup>\n <mn>2</mn>\n <msup>\n <mn>8</mn>\n <mo>′′</mo>\n </msup>\n </mrow>\n <annotation>$$ {1}^{{}^{\\circ}}3{1}^{\\prime }2{8}^{\\prime \\prime } $$</annotation>\n </semantics></math> for the Moon month and <span></span><math>\n <semantics>\n <mrow>\n <mn>20</mn>\n <mo>°</mo>\n <mn>1</mn>\n <msup>\n <mn>2</mn>\n <mo>′′</mo>\n </msup>\n </mrow>\n <annotation>$$ {20}^{{}^{\\circ}}1{2}^{\\prime \\prime } $$</annotation>\n </semantics></math> per year, that is approximately two times less than the observed values. Contrary to the Newton approach, we use a simple and obvious averaging of the Sun disturbing force for the starry period of the Moon revolution around the Earth. The applicability of the obtained formulae to satellites of other planets and to the planets themselves is argued. Comparing Newton's calculation with our method, we reveal the reason, rather convincing, that brought Newton to an imprecise result.</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 4","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple calculation of the Moon apsides motion\",\"authors\":\"V. V. Nesterenko\",\"doi\":\"10.1002/asna.20230143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A simple and clear method to calculate the averaged motion of the apsis line in the Moon orbit is proposed. The obtained result is <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n <mo>°</mo>\\n <msup>\\n <mn>1</mn>\\n <mo>′</mo>\\n </msup>\\n <mn>1</mn>\\n <msup>\\n <mn>2</mn>\\n <mo>′′</mo>\\n </msup>\\n </mrow>\\n <annotation>$$ {3}^{{}^{\\\\circ}}{1}^{\\\\prime }1{2}^{\\\\prime \\\\prime } $$</annotation>\\n </semantics></math> for the starry period of the Moon revolution around the Earth or <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>40</mn>\\n <mo>°</mo>\\n <mn>2</mn>\\n <msup>\\n <mn>2</mn>\\n <mo>′</mo>\\n </msup>\\n <mn>4</mn>\\n <msup>\\n <mn>8</mn>\\n <mo>′′</mo>\\n </msup>\\n </mrow>\\n <annotation>$$ {40}^{{}^{\\\\circ}}2{2}^{\\\\prime }4{8}^{\\\\prime \\\\prime } $$</annotation>\\n </semantics></math> per year. The modern observed value of the latter quantity is <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>40</mn>\\n <mo>°</mo>\\n <mn>4</mn>\\n <msup>\\n <mn>1</mn>\\n <mo>′</mo>\\n </msup>\\n </mrow>\\n <annotation>$$ {40}^{{}^{\\\\circ}}4{1}^{\\\\prime } $$</annotation>\\n </semantics></math> per year. In “Principia” Newton derived <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>°</mo>\\n <mn>3</mn>\\n <msup>\\n <mn>1</mn>\\n <mo>′</mo>\\n </msup>\\n <mn>2</mn>\\n <msup>\\n <mn>8</mn>\\n <mo>′′</mo>\\n </msup>\\n </mrow>\\n <annotation>$$ {1}^{{}^{\\\\circ}}3{1}^{\\\\prime }2{8}^{\\\\prime \\\\prime } $$</annotation>\\n </semantics></math> for the Moon month and <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>20</mn>\\n <mo>°</mo>\\n <mn>1</mn>\\n <msup>\\n <mn>2</mn>\\n <mo>′′</mo>\\n </msup>\\n </mrow>\\n <annotation>$$ {20}^{{}^{\\\\circ}}1{2}^{\\\\prime \\\\prime } $$</annotation>\\n </semantics></math> per year, that is approximately two times less than the observed values. Contrary to the Newton approach, we use a simple and obvious averaging of the Sun disturbing force for the starry period of the Moon revolution around the Earth. The applicability of the obtained formulae to satellites of other planets and to the planets themselves is argued. Comparing Newton's calculation with our method, we reveal the reason, rather convincing, that brought Newton to an imprecise result.</p>\",\"PeriodicalId\":55442,\"journal\":{\"name\":\"Astronomische Nachrichten\",\"volume\":\"345 4\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomische Nachrichten\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asna.20230143\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomische Nachrichten","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asna.20230143","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种简单明了的方法来计算月球轨道中远地点线的平均运动。得到的结果是月球绕地球公转的星周期或年周期。后者的现代观测值是每年。牛顿在 "原理 "中得出的月和年的数值比观测值少约两倍。与牛顿的方法相反,我们使用了一个简单而明显的太阳扰动力平均值来计算月球绕地球旋转的星空周期。我们论证了所得公式对其他行星卫星和行星本身的适用性。通过比较牛顿的计算和我们的方法,我们揭示了导致牛顿得出不精确结果的令人信服的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple calculation of the Moon apsides motion

A simple and clear method to calculate the averaged motion of the apsis line in the Moon orbit is proposed. The obtained result is 3 ° 1 1 2 ′′ $$ {3}^{{}^{\circ}}{1}^{\prime }1{2}^{\prime \prime } $$ for the starry period of the Moon revolution around the Earth or 40 ° 2 2 4 8 ′′ $$ {40}^{{}^{\circ}}2{2}^{\prime }4{8}^{\prime \prime } $$ per year. The modern observed value of the latter quantity is 40 ° 4 1 $$ {40}^{{}^{\circ}}4{1}^{\prime } $$ per year. In “Principia” Newton derived 1 ° 3 1 2 8 ′′ $$ {1}^{{}^{\circ}}3{1}^{\prime }2{8}^{\prime \prime } $$ for the Moon month and 20 ° 1 2 ′′ $$ {20}^{{}^{\circ}}1{2}^{\prime \prime } $$ per year, that is approximately two times less than the observed values. Contrary to the Newton approach, we use a simple and obvious averaging of the Sun disturbing force for the starry period of the Moon revolution around the Earth. The applicability of the obtained formulae to satellites of other planets and to the planets themselves is argued. Comparing Newton's calculation with our method, we reveal the reason, rather convincing, that brought Newton to an imprecise result.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomische Nachrichten
Astronomische Nachrichten 地学天文-天文与天体物理
CiteScore
1.80
自引率
11.10%
发文量
57
审稿时长
4-8 weeks
期刊介绍: Astronomische Nachrichten, founded in 1821 by H. C. Schumacher, is the oldest astronomical journal worldwide still being published. Famous astronomical discoveries and important papers on astronomy and astrophysics published in more than 300 volumes of the journal give an outstanding representation of the progress of astronomical research over the last 180 years. Today, Astronomical Notes/ Astronomische Nachrichten publishes articles in the field of observational and theoretical astrophysics and related topics in solar-system and solar physics. Additional, papers on astronomical instrumentation ground-based and space-based as well as papers about numerical astrophysical techniques and supercomputer modelling are covered. Papers can be completed by short video sequences in the electronic version. Astronomical Notes/ Astronomische Nachrichten also publishes special issues of meeting proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信