子集选择和因子宽度-k 矩阵的锥形

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Walid Ben-Ameur
{"title":"子集选择和因子宽度-k 矩阵的锥形","authors":"Walid Ben-Ameur","doi":"10.1137/23m1549444","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 1, Page 817-843, March 2024. <br/> Abstract. We study the cone of factor-width-[math] matrices, where the factor width of a positive semidefinite matrix is defined as the smallest number [math] allowing it to be expressed as a sum of positive semidefinite matrices that are nonzero only on a single [math] principal submatrix. Two hierarchies of approximations are proposed for this cone. Some theoretical bounds to assess the quality of the new approximations are derived. We also use these approximations to build convex conic relaxations for the subset selection problem where one has to minimize [math] under the constraint that [math] has at most [math] nonzero components. Several numerical experiments are performed showing that some of these relaxations provide a good compromise between tightness and computational complexity and rank well compared to perspective-type relaxations.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subset Selection and the Cone of Factor-Width-k Matrices\",\"authors\":\"Walid Ben-Ameur\",\"doi\":\"10.1137/23m1549444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Optimization, Volume 34, Issue 1, Page 817-843, March 2024. <br/> Abstract. We study the cone of factor-width-[math] matrices, where the factor width of a positive semidefinite matrix is defined as the smallest number [math] allowing it to be expressed as a sum of positive semidefinite matrices that are nonzero only on a single [math] principal submatrix. Two hierarchies of approximations are proposed for this cone. Some theoretical bounds to assess the quality of the new approximations are derived. We also use these approximations to build convex conic relaxations for the subset selection problem where one has to minimize [math] under the constraint that [math] has at most [math] nonzero components. Several numerical experiments are performed showing that some of these relaxations provide a good compromise between tightness and computational complexity and rank well compared to perspective-type relaxations.\",\"PeriodicalId\":49529,\"journal\":{\"name\":\"SIAM Journal on Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1549444\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1549444","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 优化期刊》,第 34 卷,第 1 期,第 817-843 页,2024 年 3 月。 摘要。我们研究了因子宽度-[math] 矩阵的锥体,其中正半inite 矩阵的因子宽度被定义为最小的[math]数,允许将其表示为仅在单个[math]主子矩阵上不为零的正半inite 矩阵之和。针对这一锥体提出了两种近似等级。我们还推导出了一些评估新近似值质量的理论边界。我们还利用这些近似值建立了子集选择问题的凸圆锥松弛,在这个问题中,我们必须在[math]最多有[math]个非零分量的约束条件下最小化[math]。几个数值实验表明,其中一些松弛方法在严密性和计算复杂性之间取得了很好的折衷,与透视型松弛方法相比,它们的效果也很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subset Selection and the Cone of Factor-Width-k Matrices
SIAM Journal on Optimization, Volume 34, Issue 1, Page 817-843, March 2024.
Abstract. We study the cone of factor-width-[math] matrices, where the factor width of a positive semidefinite matrix is defined as the smallest number [math] allowing it to be expressed as a sum of positive semidefinite matrices that are nonzero only on a single [math] principal submatrix. Two hierarchies of approximations are proposed for this cone. Some theoretical bounds to assess the quality of the new approximations are derived. We also use these approximations to build convex conic relaxations for the subset selection problem where one has to minimize [math] under the constraint that [math] has at most [math] nonzero components. Several numerical experiments are performed showing that some of these relaxations provide a good compromise between tightness and computational complexity and rank well compared to perspective-type relaxations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信