论作为黎曼孤子的子实体

IF 1 3区 数学 Q1 MATHEMATICS
Adara M. Blaga, Cihan Özgür
{"title":"论作为黎曼孤子的子实体","authors":"Adara M. Blaga, Cihan Özgür","doi":"10.1007/s40840-024-01661-z","DOIUrl":null,"url":null,"abstract":"<p>We provide some properties of Riemann solitons with torse-forming potential vector fields, pointing out their relation to Ricci solitons. We also study those Riemann soliton submanifolds isometrically immersed into a Riemannian manifold endowed with a torse-forming vector field, having as potential vector field its tangential component. We consider the minimal and the totally geodesic cases, too, as well as when the ambient manifold is of constant sectional curvature. In particular, we prove that a totally geodesic submanifold isometrically immersed into a Riemannian manifold endowed with a concircular vector field is a Riemann soliton if and only if it is of constant curvature. Furthermore, we show that, if the potential vector field of a minimal hypersurface Riemann soliton isometrically immersed into a Riemannian manifold of constant curvature and endowed with a concircular vector field is of constant length, then it is a metallic shaped hypersurface.\n</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"17 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Submanifolds as Riemann Solitons\",\"authors\":\"Adara M. Blaga, Cihan Özgür\",\"doi\":\"10.1007/s40840-024-01661-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We provide some properties of Riemann solitons with torse-forming potential vector fields, pointing out their relation to Ricci solitons. We also study those Riemann soliton submanifolds isometrically immersed into a Riemannian manifold endowed with a torse-forming vector field, having as potential vector field its tangential component. We consider the minimal and the totally geodesic cases, too, as well as when the ambient manifold is of constant sectional curvature. In particular, we prove that a totally geodesic submanifold isometrically immersed into a Riemannian manifold endowed with a concircular vector field is a Riemann soliton if and only if it is of constant curvature. Furthermore, we show that, if the potential vector field of a minimal hypersurface Riemann soliton isometrically immersed into a Riemannian manifold of constant curvature and endowed with a concircular vector field is of constant length, then it is a metallic shaped hypersurface.\\n</p>\",\"PeriodicalId\":50718,\"journal\":{\"name\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01661-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01661-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了具有环形势向量场的黎曼孤子的一些特性,指出了它们与黎奇孤子的关系。我们还研究了那些等轴地浸入到具有形成环状矢量场的黎曼流形中的黎曼孤子子流形,其切线分量是势矢量场。我们还考虑了最小和完全测地情况,以及环境流形具有恒定截面曲率的情况。特别是,我们证明了一个完全测地的子流形等轴地浸入一个具有协圆向量场的黎曼流形中,当且仅当它具有恒定曲率时,它是一个黎曼孤子。此外,我们还证明,如果一个最小超曲面黎曼孤子等轴地浸入恒定曲率的黎曼流形中,并赋有一个协圆向量场,那么它的势向量场是恒定长度的,那么它就是一个金属形超曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Submanifolds as Riemann Solitons

We provide some properties of Riemann solitons with torse-forming potential vector fields, pointing out their relation to Ricci solitons. We also study those Riemann soliton submanifolds isometrically immersed into a Riemannian manifold endowed with a torse-forming vector field, having as potential vector field its tangential component. We consider the minimal and the totally geodesic cases, too, as well as when the ambient manifold is of constant sectional curvature. In particular, we prove that a totally geodesic submanifold isometrically immersed into a Riemannian manifold endowed with a concircular vector field is a Riemann soliton if and only if it is of constant curvature. Furthermore, we show that, if the potential vector field of a minimal hypersurface Riemann soliton isometrically immersed into a Riemannian manifold of constant curvature and endowed with a concircular vector field is of constant length, then it is a metallic shaped hypersurface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信