非自治动态系统子集拓扑压力的变分原理

IF 1 3区 数学 Q1 MATHEMATICS
Javad Nazarian Sarkooh
{"title":"非自治动态系统子集拓扑压力的变分原理","authors":"Javad Nazarian Sarkooh","doi":"10.1007/s40840-024-01656-w","DOIUrl":null,"url":null,"abstract":"<p>This paper discusses a variational principle on subsets for topological pressure of non-autonomous dynamical systems. Let <span>\\((X, f_{1,\\infty })\\)</span> be a non-autonomous dynamical system and <span>\\(\\psi \\)</span> be a continuous potential on <i>X</i>, where (<i>X</i>, <i>d</i>) is a compact metric space and <span>\\(f_{1,\\infty }=(f_n)_{n=1}^\\infty \\)</span> is a sequence of continuous maps <span>\\(f_n: X\\rightarrow X\\)</span>. We define the Pesin–Pitskel topological pressure <span>\\(P_{f_{1,\\infty }}^{B}(Z,\\psi )\\)</span> and weighted topological pressure <span>\\(P_{f_{1,\\infty }}^{\\mathcal {W}}(Z,\\psi )\\)</span> for any subset <i>Z</i> of <i>X</i>. Also, we define the measure-theoretic pressure <span>\\(P_{\\mu ,f_{1,\\infty }}(X,\\psi )\\)</span> for any <span>\\(\\mu \\in \\mathcal {M}(X)\\)</span>, where <span>\\(\\mathcal {M}(X)\\)</span> denotes the set of all Borel probability measures on <i>X</i>. Then, for any nonempty compact subset <i>Z</i> of <i>X</i>, we show the following variational principle for topological pressure </p><span>$$\\begin{aligned} P_{f_{1,\\infty }}^{B}(Z,\\psi )=P_{f_{1,\\infty }}^{\\mathcal {W}}(Z,\\psi )=\\sup \\{P_{\\mu ,f_{1,\\infty }}(X,\\psi ):\\mu \\in \\mathcal {M}(X), \\mu (Z)=1\\}. \\end{aligned}$$</span><p>Moreover, we show that the Pesin–Pitskel topological pressure and weighted topological pressure can be determined by the measure-theoretic pressure of Borel probability measures. In particular, we have the same results for topological entropy.\n</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"17 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational Principle for Topological Pressure on Subsets of Non-autonomous Dynamical Systems\",\"authors\":\"Javad Nazarian Sarkooh\",\"doi\":\"10.1007/s40840-024-01656-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper discusses a variational principle on subsets for topological pressure of non-autonomous dynamical systems. Let <span>\\\\((X, f_{1,\\\\infty })\\\\)</span> be a non-autonomous dynamical system and <span>\\\\(\\\\psi \\\\)</span> be a continuous potential on <i>X</i>, where (<i>X</i>, <i>d</i>) is a compact metric space and <span>\\\\(f_{1,\\\\infty }=(f_n)_{n=1}^\\\\infty \\\\)</span> is a sequence of continuous maps <span>\\\\(f_n: X\\\\rightarrow X\\\\)</span>. We define the Pesin–Pitskel topological pressure <span>\\\\(P_{f_{1,\\\\infty }}^{B}(Z,\\\\psi )\\\\)</span> and weighted topological pressure <span>\\\\(P_{f_{1,\\\\infty }}^{\\\\mathcal {W}}(Z,\\\\psi )\\\\)</span> for any subset <i>Z</i> of <i>X</i>. Also, we define the measure-theoretic pressure <span>\\\\(P_{\\\\mu ,f_{1,\\\\infty }}(X,\\\\psi )\\\\)</span> for any <span>\\\\(\\\\mu \\\\in \\\\mathcal {M}(X)\\\\)</span>, where <span>\\\\(\\\\mathcal {M}(X)\\\\)</span> denotes the set of all Borel probability measures on <i>X</i>. Then, for any nonempty compact subset <i>Z</i> of <i>X</i>, we show the following variational principle for topological pressure </p><span>$$\\\\begin{aligned} P_{f_{1,\\\\infty }}^{B}(Z,\\\\psi )=P_{f_{1,\\\\infty }}^{\\\\mathcal {W}}(Z,\\\\psi )=\\\\sup \\\\{P_{\\\\mu ,f_{1,\\\\infty }}(X,\\\\psi ):\\\\mu \\\\in \\\\mathcal {M}(X), \\\\mu (Z)=1\\\\}. \\\\end{aligned}$$</span><p>Moreover, we show that the Pesin–Pitskel topological pressure and weighted topological pressure can be determined by the measure-theoretic pressure of Borel probability measures. In particular, we have the same results for topological entropy.\\n</p>\",\"PeriodicalId\":50718,\"journal\":{\"name\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01656-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01656-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了非自治动力系统拓扑压力子集的变分原理。让 \((X, f_{1,\infty })\) 是一个非自治动力系统,并且 \(\psi \) 是 X 上的连续势,其中 (X, d) 是一个紧凑的度量空间,并且 \(f_{1,\infty }=(f_n)_{n=1}^\infty \) 是连续映射序列 \(f_n: X\rightarrow X\) 。我们为 X 的任意子集 Z 定义了佩辛-皮茨克尔拓扑压力(P_{f_{1,\infty }}^{B}(Z,\psi ))和加权拓扑压力(P_{f_{1,\infty }}^{mathcal {W}}(Z,\psi ))。另外,我们还为任意 \(\mu \in \mathcal {M}(X)\) 定义了度量理论压力 \(P_{mu ,f_{1,\infty }}(X,\psi )\) ,其中 \(\mathcal {M}(X)\) 表示 X 上所有玻尔概率度量的集合。那么,对于 X 的任意非空紧凑子集 Z,我们展示了拓扑压力 $$\begin{aligned} 的如下变分原理P_{f_{1,\infty }}^{B}(Z,\psi )=P_{f_{1,\infty }}^{mathcal {W}}(Z,\psi )=\sup \{P_{mu ,f_{1,\infty }(X,\psi ):\mu \in \mathcal {M}(X), \mu (Z)=1\}.\end{aligned}$$此外,我们还证明了 Pesin-Pitskel 拓扑压力和加权拓扑压力可以由 Borel 概率测度的测度理论压力决定。特别是,我们对拓扑熵也有同样的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational Principle for Topological Pressure on Subsets of Non-autonomous Dynamical Systems

This paper discusses a variational principle on subsets for topological pressure of non-autonomous dynamical systems. Let \((X, f_{1,\infty })\) be a non-autonomous dynamical system and \(\psi \) be a continuous potential on X, where (Xd) is a compact metric space and \(f_{1,\infty }=(f_n)_{n=1}^\infty \) is a sequence of continuous maps \(f_n: X\rightarrow X\). We define the Pesin–Pitskel topological pressure \(P_{f_{1,\infty }}^{B}(Z,\psi )\) and weighted topological pressure \(P_{f_{1,\infty }}^{\mathcal {W}}(Z,\psi )\) for any subset Z of X. Also, we define the measure-theoretic pressure \(P_{\mu ,f_{1,\infty }}(X,\psi )\) for any \(\mu \in \mathcal {M}(X)\), where \(\mathcal {M}(X)\) denotes the set of all Borel probability measures on X. Then, for any nonempty compact subset Z of X, we show the following variational principle for topological pressure

$$\begin{aligned} P_{f_{1,\infty }}^{B}(Z,\psi )=P_{f_{1,\infty }}^{\mathcal {W}}(Z,\psi )=\sup \{P_{\mu ,f_{1,\infty }}(X,\psi ):\mu \in \mathcal {M}(X), \mu (Z)=1\}. \end{aligned}$$

Moreover, we show that the Pesin–Pitskel topological pressure and weighted topological pressure can be determined by the measure-theoretic pressure of Borel probability measures. In particular, we have the same results for topological entropy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信