{"title":"云原生应用的根本原因分析","authors":"Bartosz Żurkowski;Krzysztof Zieliński","doi":"10.1109/TCC.2024.3358823","DOIUrl":null,"url":null,"abstract":"Root cause analysis (RCA) is a critical component in maintaining the reliability and performance of modern cloud applications. However, due to the inherent complexity of cloud environments, traditional RCA techniques become insufficient in supporting system administrators in daily incident response routines. This article presents an RCA solution specifically designed for cloud applications, capable of pinpointing failure root causes and recreating complete fault trajectories from the root cause to the effect. The novelty of our approach lies in approximating causal symptom dependencies by synergizing several symptom correlation methods that assess symptoms in terms of structural, semantic, and temporal aspects. The solution integrates statistical methods with system structure and behavior mining, offering a more comprehensive analysis than existing techniques. Based on these concepts, in this work, we provide definitions and construction algorithms for RCA model structures used in the inference, propose a symptom correlation framework encompassing essential elements of symptom data analysis, and provide a detailed description of the elaborated root cause identification process. Functional evaluation on a live microservice-based system demonstrates the effectiveness of our approach in identifying root causes of complex failures across multiple cloud layers.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Root Cause Analysis for Cloud-Native Applications\",\"authors\":\"Bartosz Żurkowski;Krzysztof Zieliński\",\"doi\":\"10.1109/TCC.2024.3358823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Root cause analysis (RCA) is a critical component in maintaining the reliability and performance of modern cloud applications. However, due to the inherent complexity of cloud environments, traditional RCA techniques become insufficient in supporting system administrators in daily incident response routines. This article presents an RCA solution specifically designed for cloud applications, capable of pinpointing failure root causes and recreating complete fault trajectories from the root cause to the effect. The novelty of our approach lies in approximating causal symptom dependencies by synergizing several symptom correlation methods that assess symptoms in terms of structural, semantic, and temporal aspects. The solution integrates statistical methods with system structure and behavior mining, offering a more comprehensive analysis than existing techniques. Based on these concepts, in this work, we provide definitions and construction algorithms for RCA model structures used in the inference, propose a symptom correlation framework encompassing essential elements of symptom data analysis, and provide a detailed description of the elaborated root cause identification process. Functional evaluation on a live microservice-based system demonstrates the effectiveness of our approach in identifying root causes of complex failures across multiple cloud layers.\",\"PeriodicalId\":13202,\"journal\":{\"name\":\"IEEE Transactions on Cloud Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cloud Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10415627/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10415627/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Root cause analysis (RCA) is a critical component in maintaining the reliability and performance of modern cloud applications. However, due to the inherent complexity of cloud environments, traditional RCA techniques become insufficient in supporting system administrators in daily incident response routines. This article presents an RCA solution specifically designed for cloud applications, capable of pinpointing failure root causes and recreating complete fault trajectories from the root cause to the effect. The novelty of our approach lies in approximating causal symptom dependencies by synergizing several symptom correlation methods that assess symptoms in terms of structural, semantic, and temporal aspects. The solution integrates statistical methods with system structure and behavior mining, offering a more comprehensive analysis than existing techniques. Based on these concepts, in this work, we provide definitions and construction algorithms for RCA model structures used in the inference, propose a symptom correlation framework encompassing essential elements of symptom data analysis, and provide a detailed description of the elaborated root cause identification process. Functional evaluation on a live microservice-based system demonstrates the effectiveness of our approach in identifying root causes of complex failures across multiple cloud layers.
期刊介绍:
The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.