边缘云协作无人机目标检测:使用模糊神经网络的边缘嵌入式轻量级算法设计和任务卸载

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yazhou Yuan;Shicong Gao;Ziteng Zhang;Wenye Wang;Zhezhuang Xu;Zhixin Liu
{"title":"边缘云协作无人机目标检测:使用模糊神经网络的边缘嵌入式轻量级算法设计和任务卸载","authors":"Yazhou Yuan;Shicong Gao;Ziteng Zhang;Wenye Wang;Zhezhuang Xu;Zhixin Liu","doi":"10.1109/TCC.2024.3361858","DOIUrl":null,"url":null,"abstract":"With the rapid development of artificial intelligence and Unmanned Aerial Vehicle (UAV) technology, AI-based UAVs are increasingly utilized in various industrial and civilian applications. This paper presents a distributed Edge-Cloud collaborative framework for UAV object detection, aiming to achieve real-time and accurate detection of ground moving targets. The framework incorporates an Edge-Embedded Lightweight (\n<inline-formula><tex-math>${{\\text{E}}^{2}}\\text{L}$</tex-math></inline-formula>\n) object algorithm with an attention mechanism, enabling real-time object detection on edge-side embedded devices while maintaining high accuracy. Additionally, a decision-making mechanism based on fuzzy neural network facilitates adaptive task allocation between the edge-side and cloud-side. Experimental results demonstrate the improved running rate of the proposed algorithm compared to YOLOv4 on the edge-side NVIDIA Jetson Xavier NX, and the superior performance of the distributed Edge-Cloud collaborative framework over traditional edge computing or cloud computing algorithms in terms of speed and accuracy","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 1","pages":"306-318"},"PeriodicalIF":5.3000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge-Cloud Collaborative UAV Object Detection: Edge-Embedded Lightweight Algorithm Design and Task Offloading Using Fuzzy Neural Network\",\"authors\":\"Yazhou Yuan;Shicong Gao;Ziteng Zhang;Wenye Wang;Zhezhuang Xu;Zhixin Liu\",\"doi\":\"10.1109/TCC.2024.3361858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of artificial intelligence and Unmanned Aerial Vehicle (UAV) technology, AI-based UAVs are increasingly utilized in various industrial and civilian applications. This paper presents a distributed Edge-Cloud collaborative framework for UAV object detection, aiming to achieve real-time and accurate detection of ground moving targets. The framework incorporates an Edge-Embedded Lightweight (\\n<inline-formula><tex-math>${{\\\\text{E}}^{2}}\\\\text{L}$</tex-math></inline-formula>\\n) object algorithm with an attention mechanism, enabling real-time object detection on edge-side embedded devices while maintaining high accuracy. Additionally, a decision-making mechanism based on fuzzy neural network facilitates adaptive task allocation between the edge-side and cloud-side. Experimental results demonstrate the improved running rate of the proposed algorithm compared to YOLOv4 on the edge-side NVIDIA Jetson Xavier NX, and the superior performance of the distributed Edge-Cloud collaborative framework over traditional edge computing or cloud computing algorithms in terms of speed and accuracy\",\"PeriodicalId\":13202,\"journal\":{\"name\":\"IEEE Transactions on Cloud Computing\",\"volume\":\"12 1\",\"pages\":\"306-318\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cloud Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10420469/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10420469/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着人工智能和无人机(UAV)技术的快速发展,基于人工智能的无人机越来越多地应用于各种工业和民用领域。本文提出了一种用于无人机目标检测的分布式边缘-云协作框架,旨在实现对地面移动目标的实时、准确检测。该框架将边缘嵌入式轻量级(${{text{E}}^{2}}\text{L}$)目标算法与注意力机制相结合,在保持高精度的同时实现了边缘嵌入式设备上的实时目标检测。此外,基于模糊神经网络的决策机制促进了边缘端和云端之间的自适应任务分配。实验结果表明,与 YOLOv4 相比,所提算法在边缘侧英伟达 Jetson Xavier NX 上的运行率有所提高,而且分布式边缘-云协作框架在速度和准确性方面的表现优于传统的边缘计算或云计算算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge-Cloud Collaborative UAV Object Detection: Edge-Embedded Lightweight Algorithm Design and Task Offloading Using Fuzzy Neural Network
With the rapid development of artificial intelligence and Unmanned Aerial Vehicle (UAV) technology, AI-based UAVs are increasingly utilized in various industrial and civilian applications. This paper presents a distributed Edge-Cloud collaborative framework for UAV object detection, aiming to achieve real-time and accurate detection of ground moving targets. The framework incorporates an Edge-Embedded Lightweight ( ${{\text{E}}^{2}}\text{L}$ ) object algorithm with an attention mechanism, enabling real-time object detection on edge-side embedded devices while maintaining high accuracy. Additionally, a decision-making mechanism based on fuzzy neural network facilitates adaptive task allocation between the edge-side and cloud-side. Experimental results demonstrate the improved running rate of the proposed algorithm compared to YOLOv4 on the edge-side NVIDIA Jetson Xavier NX, and the superior performance of the distributed Edge-Cloud collaborative framework over traditional edge computing or cloud computing algorithms in terms of speed and accuracy
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信