构建具有非还原根系统的伪还原群

Pub Date : 2024-02-24 DOI:10.1007/s00031-024-09843-6
Michael Bate, Gerhard Röhrle, Damian Sercombe, David I. Stewart
{"title":"构建具有非还原根系统的伪还原群","authors":"Michael Bate, Gerhard Röhrle, Damian Sercombe, David I. Stewart","doi":"10.1007/s00031-024-09843-6","DOIUrl":null,"url":null,"abstract":"<p>We describe a straightforward construction of the pseudo-split absolutely pseudo-simple groups of minimal type with irreducible root systems of type <span>\\(BC_n\\)</span>; these exist only in characteristic 2. We also give a formula for the dimensions of their irreducible modules.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Construction of Pseudo-reductive Groups with Non-reduced Root Systems\",\"authors\":\"Michael Bate, Gerhard Röhrle, Damian Sercombe, David I. Stewart\",\"doi\":\"10.1007/s00031-024-09843-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We describe a straightforward construction of the pseudo-split absolutely pseudo-simple groups of minimal type with irreducible root systems of type <span>\\\\(BC_n\\\\)</span>; these exist only in characteristic 2. We also give a formula for the dimensions of their irreducible modules.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-024-09843-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09843-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了具有 \(BC_n\) 型不可还原根系统的极小型伪分裂绝对伪简单群的直接构造;这些群只存在于特征 2 中。我们还给出了它们的不可还原模块的维数公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Construction of Pseudo-reductive Groups with Non-reduced Root Systems

分享
查看原文
A Construction of Pseudo-reductive Groups with Non-reduced Root Systems

We describe a straightforward construction of the pseudo-split absolutely pseudo-simple groups of minimal type with irreducible root systems of type \(BC_n\); these exist only in characteristic 2. We also give a formula for the dimensions of their irreducible modules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信