Mingyang Zang;Pooja Mukund;Britney Forsyth;Andrew F. Laine;Kaveri A. Thakoor
{"title":"通过基于 CNN 的显著性预测方法预测临床医生对青光眼 OCT 报告的固定点","authors":"Mingyang Zang;Pooja Mukund;Britney Forsyth;Andrew F. Laine;Kaveri A. Thakoor","doi":"10.1109/OJEMB.2024.3367492","DOIUrl":null,"url":null,"abstract":"<italic>Goal:</i>\n To predict physician fixations specifically on ophthalmology optical coherence tomography (OCT) reports from eye tracking data using CNN based saliency prediction methods in order to aid in the education of ophthalmologists and ophthalmologists-in-training. \n<italic>Methods:</i>\n Fifteen ophthalmologists were recruited to each examine 20 randomly selected OCT reports and evaluate the likelihood of glaucoma for each report on a scale of 0-100. Eye movements were collected using a Pupil Labs Core eye-tracker. Fixation heat maps were generated using fixation data. \n<italic>Results:</i>\n A model trained with traditional saliency mapping resulted in a correlation coefficient (CC) value of 0.208, a Normalized Scanpath Saliency (NSS) value of 0.8172, a Kullback–Leibler (KLD) value of 2.573, and a Structural Similarity Index (SSIM) of 0.169. \n<italic>Conclusions</i>\n: The TranSalNet model was able to predict fixations within certain regions of the OCT report with reasonable accuracy, but more data is needed to improve model accuracy. Future steps include increasing data collection, improving quality of data, and modifying the model architecture.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"191-197"},"PeriodicalIF":2.7000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10440538","citationCount":"0","resultStr":"{\"title\":\"Predicting Clinician Fixations on Glaucoma OCT Reports via CNN-Based Saliency Prediction Methods\",\"authors\":\"Mingyang Zang;Pooja Mukund;Britney Forsyth;Andrew F. Laine;Kaveri A. Thakoor\",\"doi\":\"10.1109/OJEMB.2024.3367492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<italic>Goal:</i>\\n To predict physician fixations specifically on ophthalmology optical coherence tomography (OCT) reports from eye tracking data using CNN based saliency prediction methods in order to aid in the education of ophthalmologists and ophthalmologists-in-training. \\n<italic>Methods:</i>\\n Fifteen ophthalmologists were recruited to each examine 20 randomly selected OCT reports and evaluate the likelihood of glaucoma for each report on a scale of 0-100. Eye movements were collected using a Pupil Labs Core eye-tracker. Fixation heat maps were generated using fixation data. \\n<italic>Results:</i>\\n A model trained with traditional saliency mapping resulted in a correlation coefficient (CC) value of 0.208, a Normalized Scanpath Saliency (NSS) value of 0.8172, a Kullback–Leibler (KLD) value of 2.573, and a Structural Similarity Index (SSIM) of 0.169. \\n<italic>Conclusions</i>\\n: The TranSalNet model was able to predict fixations within certain regions of the OCT report with reasonable accuracy, but more data is needed to improve model accuracy. Future steps include increasing data collection, improving quality of data, and modifying the model architecture.\",\"PeriodicalId\":33825,\"journal\":{\"name\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"volume\":\"5 \",\"pages\":\"191-197\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10440538\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10440538/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10440538/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Predicting Clinician Fixations on Glaucoma OCT Reports via CNN-Based Saliency Prediction Methods
Goal:
To predict physician fixations specifically on ophthalmology optical coherence tomography (OCT) reports from eye tracking data using CNN based saliency prediction methods in order to aid in the education of ophthalmologists and ophthalmologists-in-training.
Methods:
Fifteen ophthalmologists were recruited to each examine 20 randomly selected OCT reports and evaluate the likelihood of glaucoma for each report on a scale of 0-100. Eye movements were collected using a Pupil Labs Core eye-tracker. Fixation heat maps were generated using fixation data.
Results:
A model trained with traditional saliency mapping resulted in a correlation coefficient (CC) value of 0.208, a Normalized Scanpath Saliency (NSS) value of 0.8172, a Kullback–Leibler (KLD) value of 2.573, and a Structural Similarity Index (SSIM) of 0.169.
Conclusions
: The TranSalNet model was able to predict fixations within certain regions of the OCT report with reasonable accuracy, but more data is needed to improve model accuracy. Future steps include increasing data collection, improving quality of data, and modifying the model architecture.
期刊介绍:
The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.