用于图像去噪的深度特征的可学习非局部自相似性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Junying Meng, Faqiang Wang, Jun Liu
{"title":"用于图像去噪的深度特征的可学习非局部自相似性","authors":"Junying Meng, Faqiang Wang, Jun Liu","doi":"10.1137/22m1536996","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 441-475, March 2024. <br/> Abstract. High-dimensional deep features extracted by convolutional neural networks have nonlocal self-similarity. However, incorporating this nonlocal prior of deep features into deep network architectures with an interpretable variational framework is rarely explored. In this paper, we propose a learnable nonlocal self-similarity deep feature network for image denoising. Our method is motivated by the fact that the high-dimensional deep features obey a mixture probability distribution based on the Parzen–Rosenblatt window method. Then a regularizer with learnable nonlocal weights is proposed by considering the dual representation of the log-probability prior of the deep features. Specifically, the nonlocal weights are introduced as dual variables that can be learned by unrolling the associated numerical scheme. This leads to nonlocal modules (NLMs) in newly designed networks. Our method provides a statistical and variational interpretation for the nonlocal self-attention mechanism widely used in various networks. By adopting nonoverlapping window and region decomposition techniques, we can significantly reduce the computational complexity of nonlocal self-similarity, thus enabling parallel computation of the NLM. The solution to the proposed variational problem can be formulated as a learnable nonlocal self-similarity network for image denoising. This work offers a novel approach for constructing network structures that consider self-similarity and nonlocality. The improvements achieved by this method are predictable and partially controllable. Compared with several closely related denoising methods, the experimental results show the effectiveness of the proposed method in image denoising.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learnable Nonlocal Self-Similarity of Deep Features for Image Denoising\",\"authors\":\"Junying Meng, Faqiang Wang, Jun Liu\",\"doi\":\"10.1137/22m1536996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 441-475, March 2024. <br/> Abstract. High-dimensional deep features extracted by convolutional neural networks have nonlocal self-similarity. However, incorporating this nonlocal prior of deep features into deep network architectures with an interpretable variational framework is rarely explored. In this paper, we propose a learnable nonlocal self-similarity deep feature network for image denoising. Our method is motivated by the fact that the high-dimensional deep features obey a mixture probability distribution based on the Parzen–Rosenblatt window method. Then a regularizer with learnable nonlocal weights is proposed by considering the dual representation of the log-probability prior of the deep features. Specifically, the nonlocal weights are introduced as dual variables that can be learned by unrolling the associated numerical scheme. This leads to nonlocal modules (NLMs) in newly designed networks. Our method provides a statistical and variational interpretation for the nonlocal self-attention mechanism widely used in various networks. By adopting nonoverlapping window and region decomposition techniques, we can significantly reduce the computational complexity of nonlocal self-similarity, thus enabling parallel computation of the NLM. The solution to the proposed variational problem can be formulated as a learnable nonlocal self-similarity network for image denoising. This work offers a novel approach for constructing network structures that consider self-similarity and nonlocality. The improvements achieved by this method are predictable and partially controllable. Compared with several closely related denoising methods, the experimental results show the effectiveness of the proposed method in image denoising.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1536996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1536996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 影像科学杂志》第 17 卷第 1 期第 441-475 页,2024 年 3 月。 摘要卷积神经网络提取的高维深度特征具有非局部自相似性。然而,将深度特征的这种非局部先验性纳入具有可解释变异框架的深度网络体系结构的研究却很少。在本文中,我们提出了一种用于图像去噪的可学习非局部自相似性深度特征网络。我们的方法基于 Parzen-Rosenblatt 窗口法,其高维深度特征服从混合概率分布。然后,通过考虑深度特征的对数概率先验的对偶表示,提出了一种具有可学习非局部权重的正则化器。具体来说,非局部权重是作为对偶变量引入的,可以通过展开相关的数值方案来学习。这就导致了新设计网络中的非局部模块(NLM)。我们的方法为广泛应用于各种网络的非局部自注意机制提供了统计和变异解释。通过采用非重叠窗口和区域分解技术,我们可以显著降低非局部自相似性的计算复杂度,从而实现 NLM 的并行计算。所提出的变分问题的解决方案可以表述为用于图像去噪的可学习非局部自相似性网络。这项工作为构建考虑自相似性和非局部性的网络结构提供了一种新方法。这种方法实现的改进是可预测和部分可控的。与几种密切相关的去噪方法相比,实验结果表明了所提方法在图像去噪方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learnable Nonlocal Self-Similarity of Deep Features for Image Denoising
SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 441-475, March 2024.
Abstract. High-dimensional deep features extracted by convolutional neural networks have nonlocal self-similarity. However, incorporating this nonlocal prior of deep features into deep network architectures with an interpretable variational framework is rarely explored. In this paper, we propose a learnable nonlocal self-similarity deep feature network for image denoising. Our method is motivated by the fact that the high-dimensional deep features obey a mixture probability distribution based on the Parzen–Rosenblatt window method. Then a regularizer with learnable nonlocal weights is proposed by considering the dual representation of the log-probability prior of the deep features. Specifically, the nonlocal weights are introduced as dual variables that can be learned by unrolling the associated numerical scheme. This leads to nonlocal modules (NLMs) in newly designed networks. Our method provides a statistical and variational interpretation for the nonlocal self-attention mechanism widely used in various networks. By adopting nonoverlapping window and region decomposition techniques, we can significantly reduce the computational complexity of nonlocal self-similarity, thus enabling parallel computation of the NLM. The solution to the proposed variational problem can be formulated as a learnable nonlocal self-similarity network for image denoising. This work offers a novel approach for constructing network structures that consider self-similarity and nonlocality. The improvements achieved by this method are predictable and partially controllable. Compared with several closely related denoising methods, the experimental results show the effectiveness of the proposed method in image denoising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信