{"title":"数学]中广义拉顿变换的视差分析","authors":"Alexander Katsevich","doi":"10.1137/23m1554746","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 415-440, March 2024. <br/> Abstract. In this paper we consider the generalized Radon transform [math] in the plane. Let [math] be a piecewise smooth function, which has a jump across a smooth curve [math]. We obtain a formula, which accurately describes view aliasing artifacts away from [math] when [math] is reconstructed from the data [math] discretized in the view direction. The formula is asymptotic, it is established in the limit as the sampling rate [math]. The proposed approach does not require that [math] be band-limited. Numerical experiments with the classical Radon transform and generalized Radon transform (which integrates over circles) demonstrate the accuracy of the formula.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"34 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of View Aliasing for the Generalized Radon Transform in [math]\",\"authors\":\"Alexander Katsevich\",\"doi\":\"10.1137/23m1554746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 415-440, March 2024. <br/> Abstract. In this paper we consider the generalized Radon transform [math] in the plane. Let [math] be a piecewise smooth function, which has a jump across a smooth curve [math]. We obtain a formula, which accurately describes view aliasing artifacts away from [math] when [math] is reconstructed from the data [math] discretized in the view direction. The formula is asymptotic, it is established in the limit as the sampling rate [math]. The proposed approach does not require that [math] be band-limited. Numerical experiments with the classical Radon transform and generalized Radon transform (which integrates over circles) demonstrate the accuracy of the formula.\",\"PeriodicalId\":49528,\"journal\":{\"name\":\"SIAM Journal on Imaging Sciences\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Imaging Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1554746\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Imaging Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1554746","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Analysis of View Aliasing for the Generalized Radon Transform in [math]
SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 415-440, March 2024. Abstract. In this paper we consider the generalized Radon transform [math] in the plane. Let [math] be a piecewise smooth function, which has a jump across a smooth curve [math]. We obtain a formula, which accurately describes view aliasing artifacts away from [math] when [math] is reconstructed from the data [math] discretized in the view direction. The formula is asymptotic, it is established in the limit as the sampling rate [math]. The proposed approach does not require that [math] be band-limited. Numerical experiments with the classical Radon transform and generalized Radon transform (which integrates over circles) demonstrate the accuracy of the formula.
期刊介绍:
SIAM Journal on Imaging Sciences (SIIMS) covers all areas of imaging sciences, broadly interpreted. It includes image formation, image processing, image analysis, image interpretation and understanding, imaging-related machine learning, and inverse problems in imaging; leading to applications to diverse areas in science, medicine, engineering, and other fields. The journal’s scope is meant to be broad enough to include areas now organized under the terms image processing, image analysis, computer graphics, computer vision, visual machine learning, and visualization. Formal approaches, at the level of mathematics and/or computations, as well as state-of-the-art practical results, are expected from manuscripts published in SIIMS. SIIMS is mathematically and computationally based, and offers a unique forum to highlight the commonality of methodology, models, and algorithms among diverse application areas of imaging sciences. SIIMS provides a broad authoritative source for fundamental results in imaging sciences, with a unique combination of mathematics and applications.
SIIMS covers a broad range of areas, including but not limited to image formation, image processing, image analysis, computer graphics, computer vision, visualization, image understanding, pattern analysis, machine intelligence, remote sensing, geoscience, signal processing, medical and biomedical imaging, and seismic imaging. The fundamental mathematical theories addressing imaging problems covered by SIIMS include, but are not limited to, harmonic analysis, partial differential equations, differential geometry, numerical analysis, information theory, learning, optimization, statistics, and probability. Research papers that innovate both in the fundamentals and in the applications are especially welcome. SIIMS focuses on conceptually new ideas, methods, and fundamentals as applied to all aspects of imaging sciences.