{"title":"寻找公平多对一匹配的复杂性","authors":"Niclas Boehmer, Tomohiro Koana","doi":"10.1145/3649220","DOIUrl":null,"url":null,"abstract":"<p>We analyze the (parameterized) computational complexity of “fair” variants of bipartite many-to-one matching, where each vertex from the “left” side is matched to exactly one vertex and each vertex from the “right” side may be matched to multiple vertices. We want to find a “fair” matching, in which each vertex from the right side is matched to a “fair” set of vertices. Assuming that each vertex from the left side has one color modeling its “attribute”, we study two fairness criteria. For instance, in one of them, we deem a vertex set fair if for any two colors, the difference between the numbers of their occurrences does not exceed a given threshold. Fairness is, for instance, relevant when finding many-to-one matchings between students and colleges, voters and constituencies, and applicants and firms. Here colors may model sociodemographic attributes, party memberships, and qualifications, respectively. </p><p>We show that finding a fair many-to-one matching is NP-hard even for three colors and maximum degree five. Our main contribution is the design of fixed-parameter tractable algorithms with respect to the number of vertices on the right side. Our algorithms make use of a variety of techniques including color coding. At the core lie integer linear programs encoding Hall like conditions. We establish the correctness of our integer programs, based on Frank’s separation theorem [Frank, Discrete Math. 1982]. We further obtain complete complexity dichotomies regarding the number of colors and the maximum degree of each side.</p>","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":"195 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Complexity of Finding Fair Many-to-One Matchings\",\"authors\":\"Niclas Boehmer, Tomohiro Koana\",\"doi\":\"10.1145/3649220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We analyze the (parameterized) computational complexity of “fair” variants of bipartite many-to-one matching, where each vertex from the “left” side is matched to exactly one vertex and each vertex from the “right” side may be matched to multiple vertices. We want to find a “fair” matching, in which each vertex from the right side is matched to a “fair” set of vertices. Assuming that each vertex from the left side has one color modeling its “attribute”, we study two fairness criteria. For instance, in one of them, we deem a vertex set fair if for any two colors, the difference between the numbers of their occurrences does not exceed a given threshold. Fairness is, for instance, relevant when finding many-to-one matchings between students and colleges, voters and constituencies, and applicants and firms. Here colors may model sociodemographic attributes, party memberships, and qualifications, respectively. </p><p>We show that finding a fair many-to-one matching is NP-hard even for three colors and maximum degree five. Our main contribution is the design of fixed-parameter tractable algorithms with respect to the number of vertices on the right side. Our algorithms make use of a variety of techniques including color coding. At the core lie integer linear programs encoding Hall like conditions. We establish the correctness of our integer programs, based on Frank’s separation theorem [Frank, Discrete Math. 1982]. We further obtain complete complexity dichotomies regarding the number of colors and the maximum degree of each side.</p>\",\"PeriodicalId\":50922,\"journal\":{\"name\":\"ACM Transactions on Algorithms\",\"volume\":\"195 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3649220\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3649220","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
The Complexity of Finding Fair Many-to-One Matchings
We analyze the (parameterized) computational complexity of “fair” variants of bipartite many-to-one matching, where each vertex from the “left” side is matched to exactly one vertex and each vertex from the “right” side may be matched to multiple vertices. We want to find a “fair” matching, in which each vertex from the right side is matched to a “fair” set of vertices. Assuming that each vertex from the left side has one color modeling its “attribute”, we study two fairness criteria. For instance, in one of them, we deem a vertex set fair if for any two colors, the difference between the numbers of their occurrences does not exceed a given threshold. Fairness is, for instance, relevant when finding many-to-one matchings between students and colleges, voters and constituencies, and applicants and firms. Here colors may model sociodemographic attributes, party memberships, and qualifications, respectively.
We show that finding a fair many-to-one matching is NP-hard even for three colors and maximum degree five. Our main contribution is the design of fixed-parameter tractable algorithms with respect to the number of vertices on the right side. Our algorithms make use of a variety of techniques including color coding. At the core lie integer linear programs encoding Hall like conditions. We establish the correctness of our integer programs, based on Frank’s separation theorem [Frank, Discrete Math. 1982]. We further obtain complete complexity dichotomies regarding the number of colors and the maximum degree of each side.
期刊介绍:
ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include
combinatorial searches and objects;
counting;
discrete optimization and approximation;
randomization and quantum computation;
parallel and distributed computation;
algorithms for
graphs,
geometry,
arithmetic,
number theory,
strings;
on-line analysis;
cryptography;
coding;
data compression;
learning algorithms;
methods of algorithmic analysis;
discrete algorithms for application areas such as
biology,
economics,
game theory,
communication,
computer systems and architecture,
hardware design,
scientific computing