关于在平面图中插入 $k$ 平面

Julia Katheder, Philipp Kindermann, Fabian Klute, Irene Parada, Ignaz Rutter
{"title":"关于在平面图中插入 $k$ 平面","authors":"Julia Katheder, Philipp Kindermann, Fabian Klute, Irene Parada, Ignaz Rutter","doi":"arxiv-2402.14552","DOIUrl":null,"url":null,"abstract":"We introduce the $k$-Plane Insertion into Plane drawing ($k$-PIP) problem:\ngiven a plane drawing of a planar graph $G$ and a set of edges $F$, insert the\nedges in $F$ into the drawing such that the resulting drawing is $k$-plane. In\nthis paper, we focus on the $1$-PIP scenario. We present a linear-time\nalgorithm for the case that $G$ is a triangulation, while proving\nNP-completeness for the case that $G$ is biconnected and $F$ forms a path or a\nmatching.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On $k$-Plane Insertion into Plane Drawings\",\"authors\":\"Julia Katheder, Philipp Kindermann, Fabian Klute, Irene Parada, Ignaz Rutter\",\"doi\":\"arxiv-2402.14552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the $k$-Plane Insertion into Plane drawing ($k$-PIP) problem:\\ngiven a plane drawing of a planar graph $G$ and a set of edges $F$, insert the\\nedges in $F$ into the drawing such that the resulting drawing is $k$-plane. In\\nthis paper, we focus on the $1$-PIP scenario. We present a linear-time\\nalgorithm for the case that $G$ is a triangulation, while proving\\nNP-completeness for the case that $G$ is biconnected and $F$ forms a path or a\\nmatching.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2402.14552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.14552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了 $k$-Plane Insertion into Plane drawing($k$-PIP)问题:给定一个平面图的平面图 $G$ 和一组边 $F$,将 $F$ 中的边插入到平面图中,这样得到的平面图就是 $k$-平面图。在本文中,我们将重点讨论 $1$-PIP情形。我们针对 $G$ 是三角形的情况提出了一种线性时间算法,同时证明了 $G$ 是双连接且 $F$ 构成路径或匹配的情况下的线性时间完备性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On $k$-Plane Insertion into Plane Drawings
We introduce the $k$-Plane Insertion into Plane drawing ($k$-PIP) problem: given a plane drawing of a planar graph $G$ and a set of edges $F$, insert the edges in $F$ into the drawing such that the resulting drawing is $k$-plane. In this paper, we focus on the $1$-PIP scenario. We present a linear-time algorithm for the case that $G$ is a triangulation, while proving NP-completeness for the case that $G$ is biconnected and $F$ forms a path or a matching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信