论表面弹性的增量方程

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiang Yu, Yibin Fu
{"title":"论表面弹性的增量方程","authors":"Xiang Yu, Yibin Fu","doi":"10.1177/10812865231226183","DOIUrl":null,"url":null,"abstract":"We derive the incremental equations for a hyperelastic solid that incorporate surface tension effect by assuming that the surface energy is a general function of the surface deformation gradient. The incremental equations take the same simple form as their purely mechanical counterparts and are valid for any geometry. In particular, for isotropic materials, the extra surface elastic moduli are expressed in terms of the surface energy function and the two surface principal stretches. The effectiveness of the resulting incremental theory is illustrated by applying it to study the Plateau–Rayleigh and Wilkes instabilities in a solid cylinder.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"42 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the incremental equations in surface elasticity\",\"authors\":\"Xiang Yu, Yibin Fu\",\"doi\":\"10.1177/10812865231226183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive the incremental equations for a hyperelastic solid that incorporate surface tension effect by assuming that the surface energy is a general function of the surface deformation gradient. The incremental equations take the same simple form as their purely mechanical counterparts and are valid for any geometry. In particular, for isotropic materials, the extra surface elastic moduli are expressed in terms of the surface energy function and the two surface principal stretches. The effectiveness of the resulting incremental theory is illustrated by applying it to study the Plateau–Rayleigh and Wilkes instabilities in a solid cylinder.\",\"PeriodicalId\":49854,\"journal\":{\"name\":\"Mathematics and Mechanics of Solids\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10812865231226183\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865231226183","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们假设表面能是表面变形梯度的一般函数,从而推导出包含表面张力效应的超弹性固体增量方程。增量方程的形式与纯机械方程相同,并且适用于任何几何形状。特别是对于各向同性材料,额外的表面弹性模量用表面能函数和两个表面主拉伸来表示。通过应用增量理论研究固体圆柱体中的高原-雷利和威尔克斯不稳定性,说明了该理论的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the incremental equations in surface elasticity
We derive the incremental equations for a hyperelastic solid that incorporate surface tension effect by assuming that the surface energy is a general function of the surface deformation gradient. The incremental equations take the same simple form as their purely mechanical counterparts and are valid for any geometry. In particular, for isotropic materials, the extra surface elastic moduli are expressed in terms of the surface energy function and the two surface principal stretches. The effectiveness of the resulting incremental theory is illustrated by applying it to study the Plateau–Rayleigh and Wilkes instabilities in a solid cylinder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Mechanics of Solids
Mathematics and Mechanics of Solids 工程技术-材料科学:综合
CiteScore
4.80
自引率
19.20%
发文量
159
审稿时长
1 months
期刊介绍: Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science. The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信