Yanhui Mao, Longhan Yang, Aiqing Huo, Fei Li, Yi Gao
{"title":"用于提取近位姿态参数的井下弱信噪比信号的 FSCEEMD 方法","authors":"Yanhui Mao, Longhan Yang, Aiqing Huo, Fei Li, Yi Gao","doi":"10.1186/s13634-024-01120-8","DOIUrl":null,"url":null,"abstract":"<p>In practice, the near-bit drilling tool confronts with strong vibrations and high-speed rotation. Therein the original signal amplitude of the tool attitude measurements is relatively feeble, and the signal-to-noise ratio (SNR) is exceptionally low. To handle this issue, this paper proposes a weak SNR signal extraction method, frequency selecting complementary ensemble empirical mode decomposition, which is based on ensemble empirical mode decomposition combining with complementary noise and frequency selecting. This method firstly adds different positive and negative pairs of auxiliary white noise to the original near-bit weak SNR signal, secondly adopts empirical mode decomposition on each pair of noise-added signals, then performs ensemble averaging on the obtained multiple sets of intrinsic mode function (IMF) to output more stable IMF of each order and set suitable weights according to designed frequency threshold, and finally reconstructs the original useful signal through weighted summing IMFs. Simulation results show that the extraction accuracy of well inclination angle ranges about ± 0.51°, and the extraction accuracy of tool face angle ranges about ± 1.35°, and meanwhile experimental results are provided compared with other advanced methods, which verifies the effectiveness of our method.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"11 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An FSCEEMD method for downhole weak SNR signal extraction of near-bit attitude parameters\",\"authors\":\"Yanhui Mao, Longhan Yang, Aiqing Huo, Fei Li, Yi Gao\",\"doi\":\"10.1186/s13634-024-01120-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In practice, the near-bit drilling tool confronts with strong vibrations and high-speed rotation. Therein the original signal amplitude of the tool attitude measurements is relatively feeble, and the signal-to-noise ratio (SNR) is exceptionally low. To handle this issue, this paper proposes a weak SNR signal extraction method, frequency selecting complementary ensemble empirical mode decomposition, which is based on ensemble empirical mode decomposition combining with complementary noise and frequency selecting. This method firstly adds different positive and negative pairs of auxiliary white noise to the original near-bit weak SNR signal, secondly adopts empirical mode decomposition on each pair of noise-added signals, then performs ensemble averaging on the obtained multiple sets of intrinsic mode function (IMF) to output more stable IMF of each order and set suitable weights according to designed frequency threshold, and finally reconstructs the original useful signal through weighted summing IMFs. Simulation results show that the extraction accuracy of well inclination angle ranges about ± 0.51°, and the extraction accuracy of tool face angle ranges about ± 1.35°, and meanwhile experimental results are provided compared with other advanced methods, which verifies the effectiveness of our method.</p>\",\"PeriodicalId\":11816,\"journal\":{\"name\":\"EURASIP Journal on Advances in Signal Processing\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-024-01120-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-024-01120-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
An FSCEEMD method for downhole weak SNR signal extraction of near-bit attitude parameters
In practice, the near-bit drilling tool confronts with strong vibrations and high-speed rotation. Therein the original signal amplitude of the tool attitude measurements is relatively feeble, and the signal-to-noise ratio (SNR) is exceptionally low. To handle this issue, this paper proposes a weak SNR signal extraction method, frequency selecting complementary ensemble empirical mode decomposition, which is based on ensemble empirical mode decomposition combining with complementary noise and frequency selecting. This method firstly adds different positive and negative pairs of auxiliary white noise to the original near-bit weak SNR signal, secondly adopts empirical mode decomposition on each pair of noise-added signals, then performs ensemble averaging on the obtained multiple sets of intrinsic mode function (IMF) to output more stable IMF of each order and set suitable weights according to designed frequency threshold, and finally reconstructs the original useful signal through weighted summing IMFs. Simulation results show that the extraction accuracy of well inclination angle ranges about ± 0.51°, and the extraction accuracy of tool face angle ranges about ± 1.35°, and meanwhile experimental results are provided compared with other advanced methods, which verifies the effectiveness of our method.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.