关于线性价格影响下的最优清算的说明

Yan Dolinsky, Doron Greenstein
{"title":"关于线性价格影响下的最优清算的说明","authors":"Yan Dolinsky, Doron Greenstein","doi":"arxiv-2402.14100","DOIUrl":null,"url":null,"abstract":"In this note we consider the maximization of the expected terminal wealth for\nthe setup of quadratic transaction costs. First, we provide a very simple\nprobabilistic solution to the problem. Although the problem was largely\nstudied, as far as we know up to date this simple and probabilistic form of the\nsolution has not appeared in the literature. Next, we apply the general result\nfor the study of the case where the risky asset is given by a fractional\nBrownian Motion and the information flow of the investor can be diversified.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Optimal Liquidation with Linear Price Impact\",\"authors\":\"Yan Dolinsky, Doron Greenstein\",\"doi\":\"arxiv-2402.14100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we consider the maximization of the expected terminal wealth for\\nthe setup of quadratic transaction costs. First, we provide a very simple\\nprobabilistic solution to the problem. Although the problem was largely\\nstudied, as far as we know up to date this simple and probabilistic form of the\\nsolution has not appeared in the literature. Next, we apply the general result\\nfor the study of the case where the risky asset is given by a fractional\\nBrownian Motion and the information flow of the investor can be diversified.\",\"PeriodicalId\":501294,\"journal\":{\"name\":\"arXiv - QuantFin - Computational Finance\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2402.14100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.14100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本论文中,我们将考虑在二次交易成本的情况下,如何最大化预期最终财富。首先,我们提供了一个非常简单的概率解。尽管该问题已被广泛研究,但据我们所知,迄今为止,文献中还没有出现过这种简单的概率解。接下来,我们将一般结果用于研究风险资产由分数布朗运动给出且投资者的信息流可以多样化的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Optimal Liquidation with Linear Price Impact
In this note we consider the maximization of the expected terminal wealth for the setup of quadratic transaction costs. First, we provide a very simple probabilistic solution to the problem. Although the problem was largely studied, as far as we know up to date this simple and probabilistic form of the solution has not appeared in the literature. Next, we apply the general result for the study of the case where the risky asset is given by a fractional Brownian Motion and the information flow of the investor can be diversified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信