密集除数整数的埃尔德斯-卡克定理

IF 0.6 4区 数学 Q3 MATHEMATICS
Gérald Tenenbaum, Andreas Weingartner
{"title":"密集除数整数的埃尔德斯-卡克定理","authors":"Gérald Tenenbaum, Andreas Weingartner","doi":"10.1093/qmath/haae002","DOIUrl":null,"url":null,"abstract":"We show that for large integers n, whose ratios of consecutive divisors are bound above by an arbitrary constant, the number of prime factors follows an approximate normal distribution, with mean $C \\log_2 n$ and variance $V \\log_2 n$, where $C=1/(1-{\\rm e}^{-\\gamma})\\approx 2.280$ and V ≈ 0.414. This result is then generalized in two different directions.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"41 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ErdŐs–Kac theorem for integers with dense divisors\",\"authors\":\"Gérald Tenenbaum, Andreas Weingartner\",\"doi\":\"10.1093/qmath/haae002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that for large integers n, whose ratios of consecutive divisors are bound above by an arbitrary constant, the number of prime factors follows an approximate normal distribution, with mean $C \\\\log_2 n$ and variance $V \\\\log_2 n$, where $C=1/(1-{\\\\rm e}^{-\\\\gamma})\\\\approx 2.280$ and V ≈ 0.414. This result is then generalized in two different directions.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/qmath/haae002\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haae002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于大整数 n(其连续除数之比受一个任意常数的约束),质因数的个数遵循近似正态分布,其均值为 $C \log_2 n$,方差为 $V \log_2 n$,其中 $C=1/(1-{\rm e}^{-\gamma})约为 2.280$,V ≈ 0.414。这一结果将在两个不同的方向上得到推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An ErdŐs–Kac theorem for integers with dense divisors
We show that for large integers n, whose ratios of consecutive divisors are bound above by an arbitrary constant, the number of prime factors follows an approximate normal distribution, with mean $C \log_2 n$ and variance $V \log_2 n$, where $C=1/(1-{\rm e}^{-\gamma})\approx 2.280$ and V ≈ 0.414. This result is then generalized in two different directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信