不可还原复反射群上 Cayley 图的电阻直径和临界概率

Pub Date : 2024-02-25 DOI:10.1007/s10801-024-01302-5
Maksim Vaskouski, Hanna Zadarazhniuk
{"title":"不可还原复反射群上 Cayley 图的电阻直径和临界概率","authors":"Maksim Vaskouski, Hanna Zadarazhniuk","doi":"10.1007/s10801-024-01302-5","DOIUrl":null,"url":null,"abstract":"<p>We consider networks on minimal Cayley graphs of irreducible complex reflection groups <i>G</i>(<i>m</i>, <i>p</i>, <i>n</i>). We show that resistance diameters of these graphs have asymptotic <span>\\(\\Theta (1/n)\\)</span> as <span>\\(n\\rightarrow \\infty \\)</span> under fixed <i>m</i>, <i>p</i>. Non-trivial lower and upper asymptotic bounds for critical probabilities of percolation for there appearing a giant connected component have been obtained.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resistance diameters and critical probabilities of Cayley graphs on irreducible complex reflection groups\",\"authors\":\"Maksim Vaskouski, Hanna Zadarazhniuk\",\"doi\":\"10.1007/s10801-024-01302-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider networks on minimal Cayley graphs of irreducible complex reflection groups <i>G</i>(<i>m</i>, <i>p</i>, <i>n</i>). We show that resistance diameters of these graphs have asymptotic <span>\\\\(\\\\Theta (1/n)\\\\)</span> as <span>\\\\(n\\\\rightarrow \\\\infty \\\\)</span> under fixed <i>m</i>, <i>p</i>. Non-trivial lower and upper asymptotic bounds for critical probabilities of percolation for there appearing a giant connected component have been obtained.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-024-01302-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01302-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了不可还原复反射群 G(m,p,n)的最小 Cayley 图上的网络。我们证明,在固定的 m、p 条件下,这些图的阻力直径具有渐近的 \(\Theta (1/n)\) as \(n\rightarrow \infty \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Resistance diameters and critical probabilities of Cayley graphs on irreducible complex reflection groups

We consider networks on minimal Cayley graphs of irreducible complex reflection groups G(mpn). We show that resistance diameters of these graphs have asymptotic \(\Theta (1/n)\) as \(n\rightarrow \infty \) under fixed m, p. Non-trivial lower and upper asymptotic bounds for critical probabilities of percolation for there appearing a giant connected component have been obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信