Caroline Accurso, Vitaliy Chernyshov, Leaha Hand, Sogol Jahanbekam, Paul Wenger
{"title":"平面图的弱动态着色","authors":"Caroline Accurso, Vitaliy Chernyshov, Leaha Hand, Sogol Jahanbekam, Paul Wenger","doi":"10.1007/s00373-023-02748-3","DOIUrl":null,"url":null,"abstract":"<p>The <i>k</i>-<i>weak-dynamic number</i> of a graph <i>G</i> is the smallest number of colors we need to color the vertices of <i>G</i> in such a way that each vertex <i>v</i> of degree <i>d</i>(<i>v</i>) sees at least min<span>\\(\\{k,d(v)\\}\\)</span> colors on its neighborhood. We use reducible configurations and list coloring of graphs to prove that all planar graphs have 3-weak-dynamic number at most 6.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"128 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak Dynamic Coloring of Planar Graphs\",\"authors\":\"Caroline Accurso, Vitaliy Chernyshov, Leaha Hand, Sogol Jahanbekam, Paul Wenger\",\"doi\":\"10.1007/s00373-023-02748-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The <i>k</i>-<i>weak-dynamic number</i> of a graph <i>G</i> is the smallest number of colors we need to color the vertices of <i>G</i> in such a way that each vertex <i>v</i> of degree <i>d</i>(<i>v</i>) sees at least min<span>\\\\(\\\\{k,d(v)\\\\}\\\\)</span> colors on its neighborhood. We use reducible configurations and list coloring of graphs to prove that all planar graphs have 3-weak-dynamic number at most 6.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-023-02748-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02748-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
图 G 的 k 弱动态数是我们为 G 的顶点着色所需的最小颜色数,即每个度数为 d(v)的顶点 v 在其邻域上看到的颜色至少为 min(\{k,d(v)\}\)。我们使用可还原配置和图的列表着色来证明所有平面图的 3 弱动态数最多为 6。
The k-weak-dynamic number of a graph G is the smallest number of colors we need to color the vertices of G in such a way that each vertex v of degree d(v) sees at least min\(\{k,d(v)\}\) colors on its neighborhood. We use reducible configurations and list coloring of graphs to prove that all planar graphs have 3-weak-dynamic number at most 6.
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.