平面图的弱动态着色

IF 0.6 4区 数学 Q3 MATHEMATICS
Caroline Accurso, Vitaliy Chernyshov, Leaha Hand, Sogol Jahanbekam, Paul Wenger
{"title":"平面图的弱动态着色","authors":"Caroline Accurso, Vitaliy Chernyshov, Leaha Hand, Sogol Jahanbekam, Paul Wenger","doi":"10.1007/s00373-023-02748-3","DOIUrl":null,"url":null,"abstract":"<p>The <i>k</i>-<i>weak-dynamic number</i> of a graph <i>G</i> is the smallest number of colors we need to color the vertices of <i>G</i> in such a way that each vertex <i>v</i> of degree <i>d</i>(<i>v</i>) sees at least min<span>\\(\\{k,d(v)\\}\\)</span> colors on its neighborhood. We use reducible configurations and list coloring of graphs to prove that all planar graphs have 3-weak-dynamic number at most 6.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"128 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak Dynamic Coloring of Planar Graphs\",\"authors\":\"Caroline Accurso, Vitaliy Chernyshov, Leaha Hand, Sogol Jahanbekam, Paul Wenger\",\"doi\":\"10.1007/s00373-023-02748-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The <i>k</i>-<i>weak-dynamic number</i> of a graph <i>G</i> is the smallest number of colors we need to color the vertices of <i>G</i> in such a way that each vertex <i>v</i> of degree <i>d</i>(<i>v</i>) sees at least min<span>\\\\(\\\\{k,d(v)\\\\}\\\\)</span> colors on its neighborhood. We use reducible configurations and list coloring of graphs to prove that all planar graphs have 3-weak-dynamic number at most 6.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-023-02748-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02748-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图 G 的 k 弱动态数是我们为 G 的顶点着色所需的最小颜色数,即每个度数为 d(v)的顶点 v 在其邻域上看到的颜色至少为 min(\{k,d(v)\}\)。我们使用可还原配置和图的列表着色来证明所有平面图的 3 弱动态数最多为 6。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Weak Dynamic Coloring of Planar Graphs

Weak Dynamic Coloring of Planar Graphs

The k-weak-dynamic number of a graph G is the smallest number of colors we need to color the vertices of G in such a way that each vertex v of degree d(v) sees at least min\(\{k,d(v)\}\) colors on its neighborhood. We use reducible configurations and list coloring of graphs to prove that all planar graphs have 3-weak-dynamic number at most 6.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信