关于 "错乱图的某些规则子图的最大独立集 "的说明

Pub Date : 2024-02-23 DOI:10.1007/s10801-024-01304-3
Yuval Filmus, Nathan Lindzey
{"title":"关于 \"错乱图的某些规则子图的最大独立集 \"的说明","authors":"Yuval Filmus, Nathan Lindzey","doi":"10.1007/s10801-024-01304-3","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(D_{n,k}\\)</span> be the set of all permutations of the symmetric group <span>\\(S_n\\)</span> that have no cycles of length <i>i</i> for all <span>\\(1 \\le i \\le k\\)</span>. In the paper mentioned above, Ku, Lau, and Wong prove that the set of all the largest independent sets of the Cayley graph <span>\\(\\text {Cay}(S_n,D_{n,k})\\)</span> is equal to the set of all the largest independent sets in the derangement graph <span>\\(\\text {Cay}(S_n,D_{n,1})\\)</span>, provided <i>n</i> is sufficiently large in terms of <i>k</i>. We give a simpler proof that holds for all <i>n</i>, <i>k</i> and also applies to the alternating group.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on “Largest independent sets of certain regular subgraphs of the derangement graph”\",\"authors\":\"Yuval Filmus, Nathan Lindzey\",\"doi\":\"10.1007/s10801-024-01304-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(D_{n,k}\\\\)</span> be the set of all permutations of the symmetric group <span>\\\\(S_n\\\\)</span> that have no cycles of length <i>i</i> for all <span>\\\\(1 \\\\le i \\\\le k\\\\)</span>. In the paper mentioned above, Ku, Lau, and Wong prove that the set of all the largest independent sets of the Cayley graph <span>\\\\(\\\\text {Cay}(S_n,D_{n,k})\\\\)</span> is equal to the set of all the largest independent sets in the derangement graph <span>\\\\(\\\\text {Cay}(S_n,D_{n,1})\\\\)</span>, provided <i>n</i> is sufficiently large in terms of <i>k</i>. We give a simpler proof that holds for all <i>n</i>, <i>k</i> and also applies to the alternating group.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-024-01304-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01304-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 \(D_{n,k}\) 是对称组 \(S_n\) 的所有排列的集合,这些排列在所有 \(1 \le i \le k\) 条件下都没有长度为 i 的循环。在上面提到的论文中,Ku、Lau 和 Wong 证明,只要 n 对 k 来说足够大,那么 Cayley 图 \(\text {Cay}(S_n,D_{n,k})\) 中所有最大独立集的集合等于 derangement 图 \(\text {Cay}(S_n,D_{n,1})\) 中所有最大独立集的集合。我们给出了一个更简单的证明,它对所有 n、k 都成立,并且同样适用于交替群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A note on “Largest independent sets of certain regular subgraphs of the derangement graph”

Let \(D_{n,k}\) be the set of all permutations of the symmetric group \(S_n\) that have no cycles of length i for all \(1 \le i \le k\). In the paper mentioned above, Ku, Lau, and Wong prove that the set of all the largest independent sets of the Cayley graph \(\text {Cay}(S_n,D_{n,k})\) is equal to the set of all the largest independent sets in the derangement graph \(\text {Cay}(S_n,D_{n,1})\), provided n is sufficiently large in terms of k. We give a simpler proof that holds for all nk and also applies to the alternating group.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信