应用全局敏感性分析确定概率设计空间

IF 1.5 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Sergei Kucherenko, Dimitris Giamalakis, Nilay Shah
{"title":"应用全局敏感性分析确定概率设计空间","authors":"Sergei Kucherenko, Dimitris Giamalakis, Nilay Shah","doi":"10.1615/int.j.uncertaintyquantification.2024051384","DOIUrl":null,"url":null,"abstract":"The design space (DS) is defined as the combination of materials and process conditions, which provides assurance of quality for a pharmaceutical product. A model-based approach to identify a probability-based DS requires costly simulations across the entire process parameter space (certain) and the uncertain model parameter space. We demonstrate that application of global sensitivity analysis (GSA) can significantly reduce model complexity and reduce computational time for identifying and quantifying DS by screening out non-important uncertain parameters. The novelty of this approach in that the usage of an indicator function which takes only binary values as a model function allows to apply a straightforward GSA based on Sobol’ sensitivity indices and to avoid using more costly Monte Carlo filtering or GSA for constrained problems. We consider an application from the chemical industry to illustrate how this formulation results in model reduction and dramatic reduction of the number of required model runs.","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"141 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of global sensitivity analysis for identification of probabilistic design spaces\",\"authors\":\"Sergei Kucherenko, Dimitris Giamalakis, Nilay Shah\",\"doi\":\"10.1615/int.j.uncertaintyquantification.2024051384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design space (DS) is defined as the combination of materials and process conditions, which provides assurance of quality for a pharmaceutical product. A model-based approach to identify a probability-based DS requires costly simulations across the entire process parameter space (certain) and the uncertain model parameter space. We demonstrate that application of global sensitivity analysis (GSA) can significantly reduce model complexity and reduce computational time for identifying and quantifying DS by screening out non-important uncertain parameters. The novelty of this approach in that the usage of an indicator function which takes only binary values as a model function allows to apply a straightforward GSA based on Sobol’ sensitivity indices and to avoid using more costly Monte Carlo filtering or GSA for constrained problems. We consider an application from the chemical industry to illustrate how this formulation results in model reduction and dramatic reduction of the number of required model runs.\",\"PeriodicalId\":48814,\"journal\":{\"name\":\"International Journal for Uncertainty Quantification\",\"volume\":\"141 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Uncertainty Quantification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/int.j.uncertaintyquantification.2024051384\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2024051384","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

设计空间(DS)被定义为材料和工艺条件的组合,它为药品的质量提供了保证。采用基于模型的方法来确定基于概率的 DS,需要在整个工艺参数空间(确定的)和不确定的模型参数空间内进行代价高昂的模拟。我们证明,应用全局灵敏度分析 (GSA) 可以显著降低模型的复杂性,并通过筛选出不重要的不确定参数来减少识别和量化 DS 的计算时间。这种方法的新颖之处在于,使用只取二进制值的指标函数作为模型函数,可以直接应用基于索博尔灵敏度指数的 GSA,并避免使用成本更高的蒙特卡罗过滤或 GSA 来处理受限问题。我们考虑了化学工业中的一个应用,以说明这种表述方式如何减少了模型,并显著减少了所需的模型运行次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of global sensitivity analysis for identification of probabilistic design spaces
The design space (DS) is defined as the combination of materials and process conditions, which provides assurance of quality for a pharmaceutical product. A model-based approach to identify a probability-based DS requires costly simulations across the entire process parameter space (certain) and the uncertain model parameter space. We demonstrate that application of global sensitivity analysis (GSA) can significantly reduce model complexity and reduce computational time for identifying and quantifying DS by screening out non-important uncertain parameters. The novelty of this approach in that the usage of an indicator function which takes only binary values as a model function allows to apply a straightforward GSA based on Sobol’ sensitivity indices and to avoid using more costly Monte Carlo filtering or GSA for constrained problems. We consider an application from the chemical industry to illustrate how this formulation results in model reduction and dramatic reduction of the number of required model runs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Uncertainty Quantification
International Journal for Uncertainty Quantification ENGINEERING, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.60
自引率
5.90%
发文量
28
期刊介绍: The International Journal for Uncertainty Quantification disseminates information of permanent interest in the areas of analysis, modeling, design and control of complex systems in the presence of uncertainty. The journal seeks to emphasize methods that cross stochastic analysis, statistical modeling and scientific computing. Systems of interest are governed by differential equations possibly with multiscale features. Topics of particular interest include representation of uncertainty, propagation of uncertainty across scales, resolving the curse of dimensionality, long-time integration for stochastic PDEs, data-driven approaches for constructing stochastic models, validation, verification and uncertainty quantification for predictive computational science, and visualization of uncertainty in high-dimensional spaces. Bayesian computation and machine learning techniques are also of interest for example in the context of stochastic multiscale systems, for model selection/classification, and decision making. Reports addressing the dynamic coupling of modern experiments and modeling approaches towards predictive science are particularly encouraged. Applications of uncertainty quantification in all areas of physical and biological sciences are appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信