铁磁体局部不均匀磁场中的磁涡旋动力学

Pub Date : 2024-02-22 DOI:10.1063/10.0024322
A. S. Kovalev
{"title":"铁磁体局部不均匀磁场中的磁涡旋动力学","authors":"A. S. Kovalev","doi":"10.1063/10.0024322","DOIUrl":null,"url":null,"abstract":"The rotation of a magnetic vortex in a ferromagnet with a local smooth change in the exchange interaction is considered. The frequency of this precession is found for all distances of the vortex from defect center. The rotation velocity of the vortex nonmonotonically depends on the distance to the center, reaching a maximum at a distance of the order of the characteristic dimension of the defect. The decrease in velocity at large distances agrees with the data known in the literature. Accounting of attenuation leads to the vortex escape the defect or falling onto it along a logarithmic spiral.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of magnetic vortices in the field of local inhomogeneity of a ferromagnet\",\"authors\":\"A. S. Kovalev\",\"doi\":\"10.1063/10.0024322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rotation of a magnetic vortex in a ferromagnet with a local smooth change in the exchange interaction is considered. The frequency of this precession is found for all distances of the vortex from defect center. The rotation velocity of the vortex nonmonotonically depends on the distance to the center, reaching a maximum at a distance of the order of the characteristic dimension of the defect. The decrease in velocity at large distances agrees with the data known in the literature. Accounting of attenuation leads to the vortex escape the defect or falling onto it along a logarithmic spiral.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/10.0024322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/10.0024322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究考虑了铁磁体中磁涡旋的旋转与交换相互作用的局部平滑变化。在涡旋与缺陷中心的所有距离上都能找到这种前冲的频率。涡旋的旋转速度非单调地取决于到中心的距离,在距离达到缺陷特征尺寸的数量级时达到最大值。大距离时速度的减小与文献中已知的数据一致。计算衰减会导致涡旋沿对数螺旋线逃离缺陷或落到缺陷上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Dynamics of magnetic vortices in the field of local inhomogeneity of a ferromagnet
The rotation of a magnetic vortex in a ferromagnet with a local smooth change in the exchange interaction is considered. The frequency of this precession is found for all distances of the vortex from defect center. The rotation velocity of the vortex nonmonotonically depends on the distance to the center, reaching a maximum at a distance of the order of the characteristic dimension of the defect. The decrease in velocity at large distances agrees with the data known in the literature. Accounting of attenuation leads to the vortex escape the defect or falling onto it along a logarithmic spiral.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信