同时优化、大数化和(双)次模多面体的表征

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Martijn H. H. Schoot Uiterkamp
{"title":"同时优化、大数化和(双)次模多面体的表征","authors":"Martijn H. H. Schoot Uiterkamp","doi":"10.1287/moor.2023.0054","DOIUrl":null,"url":null,"abstract":"Motivated by resource allocation problems (RAPs) in power management applications, we investigate the existence of solutions to optimization problems that simultaneously minimize the class of Schur-convex functions, also called least-majorized elements. For this, we introduce a generalization of majorization and least-majorized elements, called (a, b)-majorization and least (a, b)-majorized elements, and characterize the feasible sets of problems that have such elements in terms of base and (bi-)submodular polyhedra. Hereby, we also obtain new characterizations of these polyhedra that extend classical characterizations in terms of optimal greedy algorithms from the 1970s. We discuss the implications of our results for RAPs in power management applications and derive a new characterization of convex cooperative games and new properties of optimal estimators of specific regularized regression problems. In general, our results highlight the combinatorial nature of simultaneously optimizing solutions and provide a theoretical explanation for why such solutions generally do not exist.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Characterization of Simultaneous Optimization, Majorization, and (Bi-)Submodular Polyhedra\",\"authors\":\"Martijn H. H. Schoot Uiterkamp\",\"doi\":\"10.1287/moor.2023.0054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by resource allocation problems (RAPs) in power management applications, we investigate the existence of solutions to optimization problems that simultaneously minimize the class of Schur-convex functions, also called least-majorized elements. For this, we introduce a generalization of majorization and least-majorized elements, called (a, b)-majorization and least (a, b)-majorized elements, and characterize the feasible sets of problems that have such elements in terms of base and (bi-)submodular polyhedra. Hereby, we also obtain new characterizations of these polyhedra that extend classical characterizations in terms of optimal greedy algorithms from the 1970s. We discuss the implications of our results for RAPs in power management applications and derive a new characterization of convex cooperative games and new properties of optimal estimators of specific regularized regression problems. In general, our results highlight the combinatorial nature of simultaneously optimizing solutions and provide a theoretical explanation for why such solutions generally do not exist.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2023.0054\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2023.0054","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

受电源管理应用中的资源分配问题(RAPs)的启发,我们研究了同时最小化舒尔凸函数类(也称为最小主化元素)的优化问题解决方案的存在性。为此,我们引入了主要化元素和最少主要化元素的广义,称为(a, b)主要化元素和最少(a, b)主要化元素,并用基多面体和(双)亚多面体描述了具有此类元素的问题的可行集。由此,我们还获得了这些多面体的新特征,扩展了 20 世纪 70 年代最优贪婪算法的经典特征。我们讨论了我们的结果对电源管理应用中的 RAP 的影响,并得出了凸合作博弈的新特征和特定正则化回归问题最优估计器的新特性。总之,我们的结果凸显了同时优化解决方案的组合性质,并从理论上解释了为什么此类解决方案通常并不存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Characterization of Simultaneous Optimization, Majorization, and (Bi-)Submodular Polyhedra
Motivated by resource allocation problems (RAPs) in power management applications, we investigate the existence of solutions to optimization problems that simultaneously minimize the class of Schur-convex functions, also called least-majorized elements. For this, we introduce a generalization of majorization and least-majorized elements, called (a, b)-majorization and least (a, b)-majorized elements, and characterize the feasible sets of problems that have such elements in terms of base and (bi-)submodular polyhedra. Hereby, we also obtain new characterizations of these polyhedra that extend classical characterizations in terms of optimal greedy algorithms from the 1970s. We discuss the implications of our results for RAPs in power management applications and derive a new characterization of convex cooperative games and new properties of optimal estimators of specific regularized regression problems. In general, our results highlight the combinatorial nature of simultaneously optimizing solutions and provide a theoretical explanation for why such solutions generally do not exist.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信