关于自旋 s = 3/2 的多子晶格 SU(4) 磁体退化平衡态的分类

Pub Date : 2024-02-22 DOI:10.1063/10.0024325
M. Yu. Kovalevsky
{"title":"关于自旋 s = 3/2 的多子晶格 SU(4) 磁体退化平衡态的分类","authors":"M. Yu. Kovalevsky","doi":"10.1063/10.0024325","DOIUrl":null,"url":null,"abstract":"The equilibrium states of multisublattice magnets with spin s = 3/2 are studied. The developed approach essentially uses the symmetry properties of the Hamiltonian, the idea of the residual symmetry of the equilibrium state, and the form of order parameters. On this basis, without using any model assumptions, classification equations for order parameters are obtained. Solutions of these equations are given in cases of broken SU(3) and SU(4) symmetries. The equilibrium structure of order parameters is presented in terms of the spontaneous anisotropy parameters of the residual symmetry generator.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the classification of degenerate equilibrium states of multisublattice SU(4) magnets with spin s = 3/2\",\"authors\":\"M. Yu. Kovalevsky\",\"doi\":\"10.1063/10.0024325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The equilibrium states of multisublattice magnets with spin s = 3/2 are studied. The developed approach essentially uses the symmetry properties of the Hamiltonian, the idea of the residual symmetry of the equilibrium state, and the form of order parameters. On this basis, without using any model assumptions, classification equations for order parameters are obtained. Solutions of these equations are given in cases of broken SU(3) and SU(4) symmetries. The equilibrium structure of order parameters is presented in terms of the spontaneous anisotropy parameters of the residual symmetry generator.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/10.0024325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/10.0024325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了自旋 s = 3/2 的多子晶格磁体的平衡态。所开发的方法主要利用了哈密顿的对称性、平衡态的残余对称性思想以及阶次参数的形式。在此基础上,无需使用任何模型假设,即可获得阶次参数的分类方程。在 SU(3) 和 SU(4) 对称性被破坏的情况下,给出了这些方程的解。用残余对称性发生器的自发各向异性参数给出了阶次参数的平衡结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the classification of degenerate equilibrium states of multisublattice SU(4) magnets with spin s = 3/2
The equilibrium states of multisublattice magnets with spin s = 3/2 are studied. The developed approach essentially uses the symmetry properties of the Hamiltonian, the idea of the residual symmetry of the equilibrium state, and the form of order parameters. On this basis, without using any model assumptions, classification equations for order parameters are obtained. Solutions of these equations are given in cases of broken SU(3) and SU(4) symmetries. The equilibrium structure of order parameters is presented in terms of the spontaneous anisotropy parameters of the residual symmetry generator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信