通过工业 4.0 优化智能建筑能源管理系统:响应面方法论

Mohammad Seraj , Mohd Parvez , Osama Khan , Zeinebou Yahya
{"title":"通过工业 4.0 优化智能建筑能源管理系统:响应面方法论","authors":"Mohammad Seraj ,&nbsp;Mohd Parvez ,&nbsp;Osama Khan ,&nbsp;Zeinebou Yahya","doi":"10.1016/j.grets.2024.100079","DOIUrl":null,"url":null,"abstract":"<div><p>Effective control of inner climatic conditions in a Heating ventilation and air conditioning (HVAC) system based on efficiency of the system is imperative to ensure occupant comfort, energy efficiency, and preservation of indoor air quality. The existing problems with HVAC system includes inefficient adjustment to internal room parameters and limited optimization based on varying loads. The current study investigates the influence of Industry 4.0 by assessing internal room parameters in an indoor ventilated room conditions for system output. Smart systems like AI and IoT, integrated with sensors, dynamically adjust indoor conditions based on external climate, enhancing HVAC system efficiency. Using Artificial Neural Networks (ANN) and Response Surface Methodology (RSM), integrated with AI and IoT sensors, optimally adjust indoor conditions in correlation with external climate, maximizing HVAC system efficiency. The study utilizes input parameters including Dry Bulb Temperature (DBT), Relative Humidity (RH), and Solar Radiation across diverse days to analyze system efficiency. ANN and RSM iteratively optimize system efficiency by training on RH, DBT, and air quality data. They converge on recommending 42% RH, 28 °C DBT, and 25 PM air quality, achieving 0.851 desirability. This approach enhances heat load (75.89%) and ventilation load (69.12%) efficiency significantly. Integration of Industry 4.0 sensors in the HVAC system resulted in a 16% efficiency increase and 15% cost effectiveness in the controlled room compared to prior measurements.</p></div>","PeriodicalId":100598,"journal":{"name":"Green Technologies and Sustainability","volume":"2 2","pages":"Article 100079"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294973612400006X/pdfft?md5=0bdd1c3eb4d841e2ea4d4ef6cd886905&pid=1-s2.0-S294973612400006X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimizing smart building energy management systems through industry 4.0: A response surface methodology approach\",\"authors\":\"Mohammad Seraj ,&nbsp;Mohd Parvez ,&nbsp;Osama Khan ,&nbsp;Zeinebou Yahya\",\"doi\":\"10.1016/j.grets.2024.100079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Effective control of inner climatic conditions in a Heating ventilation and air conditioning (HVAC) system based on efficiency of the system is imperative to ensure occupant comfort, energy efficiency, and preservation of indoor air quality. The existing problems with HVAC system includes inefficient adjustment to internal room parameters and limited optimization based on varying loads. The current study investigates the influence of Industry 4.0 by assessing internal room parameters in an indoor ventilated room conditions for system output. Smart systems like AI and IoT, integrated with sensors, dynamically adjust indoor conditions based on external climate, enhancing HVAC system efficiency. Using Artificial Neural Networks (ANN) and Response Surface Methodology (RSM), integrated with AI and IoT sensors, optimally adjust indoor conditions in correlation with external climate, maximizing HVAC system efficiency. The study utilizes input parameters including Dry Bulb Temperature (DBT), Relative Humidity (RH), and Solar Radiation across diverse days to analyze system efficiency. ANN and RSM iteratively optimize system efficiency by training on RH, DBT, and air quality data. They converge on recommending 42% RH, 28 °C DBT, and 25 PM air quality, achieving 0.851 desirability. This approach enhances heat load (75.89%) and ventilation load (69.12%) efficiency significantly. Integration of Industry 4.0 sensors in the HVAC system resulted in a 16% efficiency increase and 15% cost effectiveness in the controlled room compared to prior measurements.</p></div>\",\"PeriodicalId\":100598,\"journal\":{\"name\":\"Green Technologies and Sustainability\",\"volume\":\"2 2\",\"pages\":\"Article 100079\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S294973612400006X/pdfft?md5=0bdd1c3eb4d841e2ea4d4ef6cd886905&pid=1-s2.0-S294973612400006X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Technologies and Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S294973612400006X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Technologies and Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294973612400006X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

要确保居住者的舒适度、能源效率和室内空气质量,就必须根据暖通空调(HVAC)系统的效率对其内部气候条件进行有效控制。暖通空调系统目前存在的问题包括对室内参数的调节效率低下,以及根据不同负荷进行的优化有限。目前的研究通过评估室内通风条件下的室内参数,研究工业 4.0 对系统输出的影响。人工智能和物联网等智能系统与传感器相结合,可根据外部气候动态调节室内条件,提高暖通空调系统的效率。利用人工神经网络(ANN)和响应面方法(RSM),结合人工智能和物联网传感器,根据外部气候优化调整室内条件,最大限度地提高暖通空调系统的效率。研究利用输入参数,包括干球温度(DBT)、相对湿度(RH)和不同天数的太阳辐射来分析系统效率。ANN 和 RSM 通过对相对湿度、干球温度和空气质量数据进行训练,反复优化系统效率。它们趋同于推荐 42% 的相对湿度、28 °C 的 DBT 和 25 PM 的空气质量,达到 0.851 的可取性。这种方法显著提高了热负荷(75.89%)和通风负荷(69.12%)的效率。与之前的测量结果相比,在暖通空调系统中集成工业 4.0 传感器后,受控房间的效率提高了 16%,成本效益提高了 15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing smart building energy management systems through industry 4.0: A response surface methodology approach

Effective control of inner climatic conditions in a Heating ventilation and air conditioning (HVAC) system based on efficiency of the system is imperative to ensure occupant comfort, energy efficiency, and preservation of indoor air quality. The existing problems with HVAC system includes inefficient adjustment to internal room parameters and limited optimization based on varying loads. The current study investigates the influence of Industry 4.0 by assessing internal room parameters in an indoor ventilated room conditions for system output. Smart systems like AI and IoT, integrated with sensors, dynamically adjust indoor conditions based on external climate, enhancing HVAC system efficiency. Using Artificial Neural Networks (ANN) and Response Surface Methodology (RSM), integrated with AI and IoT sensors, optimally adjust indoor conditions in correlation with external climate, maximizing HVAC system efficiency. The study utilizes input parameters including Dry Bulb Temperature (DBT), Relative Humidity (RH), and Solar Radiation across diverse days to analyze system efficiency. ANN and RSM iteratively optimize system efficiency by training on RH, DBT, and air quality data. They converge on recommending 42% RH, 28 °C DBT, and 25 PM air quality, achieving 0.851 desirability. This approach enhances heat load (75.89%) and ventilation load (69.12%) efficiency significantly. Integration of Industry 4.0 sensors in the HVAC system resulted in a 16% efficiency increase and 15% cost effectiveness in the controlled room compared to prior measurements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信