{"title":"揭示胃癌药物敏感和耐药细胞系之间分子相互作用差异的基因调控网络。","authors":"Heewon Park","doi":"10.1089/cmb.2023.0215","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric cancer is a leading cause of cancer-related deaths globally and chemotherapy is widely accepted as the standard treatment for gastric cancer. However, drug resistance in cancer cells poses a significant obstacle to the success of chemotherapy, limiting its effectiveness in treating gastric cancer. Although many studies have been conducted to unravel the mechanisms of acquired drug resistance, the existing studies were based on abnormalities of a single gene, that is, differential gene expression (DGE) analysis. Single gene-based analysis alone is insufficient to comprehensively understand the mechanisms of drug resistance in cancer cells, because the underlying processes of the mechanism involve perturbations of the molecular interactions. To uncover the mechanism of acquired gastric cancer drug resistance, we perform for identification of differentially regulated gene networks between drug-sensitive and drug-resistant cell lines. We develop a computational strategy for identifying phenotype-specific gene networks by extending the existing method, CIdrgn, that quantifies the dissimilarity of gene networks based on comprehensive information of network structure, that is, regulatory effect between genes, structure of edge, and expression levels of genes. To enhance the efficiency of identifying differentially regulated gene networks and improve the biological relevance of our findings, we integrate additional information and incorporate knowledge of network biology, such as hubness of genes and weighted adjacency matrices. The outstanding capabilities of the developed strategy are validated through Monte Carlo simulations. By using our strategy, we uncover gene regulatory networks that specifically capture the molecular interplays distinguishing drug-sensitive and drug-resistant profiles in gastric cancer. The reliability and significance of the identified drug-sensitive and resistance-specific gene networks, as well as their related markers, are verified through literature. Our analysis for differentially regulated gene network identification has the capacity to characterize the drug-sensitive and resistance-specific molecular interplays related to mechanisms of acquired drug resistance that cannot be revealed by analysis based solely on abnormalities of a single gene, for example, DGE analysis. Through our analysis and comprehensive examination of relevant literature, we suggest that targeting the suppressors of the identified drug-resistant markers, such as the Melanoma Antigen (<i>MAGE</i>) family, Trefoil Factor (<i>TFF</i>) family, and Ras-Associated Binding 25 (<i>RAB25</i>), while enhancing the expression of inducers of the drug sensitivity markers [e.g., Serum Amyloid A (<i>SAA</i>) family], could potentially reduce drug resistance and enhance the effectiveness of chemotherapy for gastric cancer. We expect that the developed strategy will serve as a useful tool for uncovering cancer-related phenotype-specific gene regulatory networks that provide essential clues for uncovering not only drug resistance mechanisms but also complex biological systems of cancer.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"257-274"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling Gene Regulatory Networks That Characterize Difference of Molecular Interplays Between Gastric Cancer Drug Sensitive and Resistance Cell Lines.\",\"authors\":\"Heewon Park\",\"doi\":\"10.1089/cmb.2023.0215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gastric cancer is a leading cause of cancer-related deaths globally and chemotherapy is widely accepted as the standard treatment for gastric cancer. However, drug resistance in cancer cells poses a significant obstacle to the success of chemotherapy, limiting its effectiveness in treating gastric cancer. Although many studies have been conducted to unravel the mechanisms of acquired drug resistance, the existing studies were based on abnormalities of a single gene, that is, differential gene expression (DGE) analysis. Single gene-based analysis alone is insufficient to comprehensively understand the mechanisms of drug resistance in cancer cells, because the underlying processes of the mechanism involve perturbations of the molecular interactions. To uncover the mechanism of acquired gastric cancer drug resistance, we perform for identification of differentially regulated gene networks between drug-sensitive and drug-resistant cell lines. We develop a computational strategy for identifying phenotype-specific gene networks by extending the existing method, CIdrgn, that quantifies the dissimilarity of gene networks based on comprehensive information of network structure, that is, regulatory effect between genes, structure of edge, and expression levels of genes. To enhance the efficiency of identifying differentially regulated gene networks and improve the biological relevance of our findings, we integrate additional information and incorporate knowledge of network biology, such as hubness of genes and weighted adjacency matrices. The outstanding capabilities of the developed strategy are validated through Monte Carlo simulations. By using our strategy, we uncover gene regulatory networks that specifically capture the molecular interplays distinguishing drug-sensitive and drug-resistant profiles in gastric cancer. The reliability and significance of the identified drug-sensitive and resistance-specific gene networks, as well as their related markers, are verified through literature. Our analysis for differentially regulated gene network identification has the capacity to characterize the drug-sensitive and resistance-specific molecular interplays related to mechanisms of acquired drug resistance that cannot be revealed by analysis based solely on abnormalities of a single gene, for example, DGE analysis. Through our analysis and comprehensive examination of relevant literature, we suggest that targeting the suppressors of the identified drug-resistant markers, such as the Melanoma Antigen (<i>MAGE</i>) family, Trefoil Factor (<i>TFF</i>) family, and Ras-Associated Binding 25 (<i>RAB25</i>), while enhancing the expression of inducers of the drug sensitivity markers [e.g., Serum Amyloid A (<i>SAA</i>) family], could potentially reduce drug resistance and enhance the effectiveness of chemotherapy for gastric cancer. We expect that the developed strategy will serve as a useful tool for uncovering cancer-related phenotype-specific gene regulatory networks that provide essential clues for uncovering not only drug resistance mechanisms but also complex biological systems of cancer.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"257-274\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2023.0215\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0215","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Unveiling Gene Regulatory Networks That Characterize Difference of Molecular Interplays Between Gastric Cancer Drug Sensitive and Resistance Cell Lines.
Gastric cancer is a leading cause of cancer-related deaths globally and chemotherapy is widely accepted as the standard treatment for gastric cancer. However, drug resistance in cancer cells poses a significant obstacle to the success of chemotherapy, limiting its effectiveness in treating gastric cancer. Although many studies have been conducted to unravel the mechanisms of acquired drug resistance, the existing studies were based on abnormalities of a single gene, that is, differential gene expression (DGE) analysis. Single gene-based analysis alone is insufficient to comprehensively understand the mechanisms of drug resistance in cancer cells, because the underlying processes of the mechanism involve perturbations of the molecular interactions. To uncover the mechanism of acquired gastric cancer drug resistance, we perform for identification of differentially regulated gene networks between drug-sensitive and drug-resistant cell lines. We develop a computational strategy for identifying phenotype-specific gene networks by extending the existing method, CIdrgn, that quantifies the dissimilarity of gene networks based on comprehensive information of network structure, that is, regulatory effect between genes, structure of edge, and expression levels of genes. To enhance the efficiency of identifying differentially regulated gene networks and improve the biological relevance of our findings, we integrate additional information and incorporate knowledge of network biology, such as hubness of genes and weighted adjacency matrices. The outstanding capabilities of the developed strategy are validated through Monte Carlo simulations. By using our strategy, we uncover gene regulatory networks that specifically capture the molecular interplays distinguishing drug-sensitive and drug-resistant profiles in gastric cancer. The reliability and significance of the identified drug-sensitive and resistance-specific gene networks, as well as their related markers, are verified through literature. Our analysis for differentially regulated gene network identification has the capacity to characterize the drug-sensitive and resistance-specific molecular interplays related to mechanisms of acquired drug resistance that cannot be revealed by analysis based solely on abnormalities of a single gene, for example, DGE analysis. Through our analysis and comprehensive examination of relevant literature, we suggest that targeting the suppressors of the identified drug-resistant markers, such as the Melanoma Antigen (MAGE) family, Trefoil Factor (TFF) family, and Ras-Associated Binding 25 (RAB25), while enhancing the expression of inducers of the drug sensitivity markers [e.g., Serum Amyloid A (SAA) family], could potentially reduce drug resistance and enhance the effectiveness of chemotherapy for gastric cancer. We expect that the developed strategy will serve as a useful tool for uncovering cancer-related phenotype-specific gene regulatory networks that provide essential clues for uncovering not only drug resistance mechanisms but also complex biological systems of cancer.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases