发现缺失的部分:青少年媒体效应移动体验抽样研究中的无响应预测因素

IF 3 2区 社会学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Anne Reinhardt, Sophie Mayen, Claudia Wilhelm
{"title":"发现缺失的部分:青少年媒体效应移动体验抽样研究中的无响应预测因素","authors":"Anne Reinhardt, Sophie Mayen, Claudia Wilhelm","doi":"10.1177/08944393241235182","DOIUrl":null,"url":null,"abstract":"Mobile Experience Sampling (MES) is a promising tool for understanding youth digital media use and its effects. Unfortunately, the method suffers from high levels of missing data. Depending on whether the data is randomly or non-randomly missing, it can have severe effects on the validity of findings. For this reason, we investigated predictors of non-response in an MES study on displacement effects of digital media use on adolescents’ well-being and academic performance ( N = 347). Multilevel binary logistic regression identified significant influencing factors of response odds, such as afternoon beeps and being outside. Importantly, adolescents with poorer school grades were more likely to miss beeps. Because this missingness was related to the outcome variable, modern missing data methods such as multiple imputation should be applied before analyzing the data. Understanding the reasons for non-response can be seen as the first step to preventing, minimizing, and handling missing data in MES studies, ultimately ensuring that the collected data is fully utilized to draw accurate conclusions.","PeriodicalId":49509,"journal":{"name":"Social Science Computer Review","volume":"1 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering the Missing Pieces: Predictors of Nonresponse in a Mobile Experience Sampling Study on Media Effects Among Youth\",\"authors\":\"Anne Reinhardt, Sophie Mayen, Claudia Wilhelm\",\"doi\":\"10.1177/08944393241235182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile Experience Sampling (MES) is a promising tool for understanding youth digital media use and its effects. Unfortunately, the method suffers from high levels of missing data. Depending on whether the data is randomly or non-randomly missing, it can have severe effects on the validity of findings. For this reason, we investigated predictors of non-response in an MES study on displacement effects of digital media use on adolescents’ well-being and academic performance ( N = 347). Multilevel binary logistic regression identified significant influencing factors of response odds, such as afternoon beeps and being outside. Importantly, adolescents with poorer school grades were more likely to miss beeps. Because this missingness was related to the outcome variable, modern missing data methods such as multiple imputation should be applied before analyzing the data. Understanding the reasons for non-response can be seen as the first step to preventing, minimizing, and handling missing data in MES studies, ultimately ensuring that the collected data is fully utilized to draw accurate conclusions.\",\"PeriodicalId\":49509,\"journal\":{\"name\":\"Social Science Computer Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Social Science Computer Review\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/08944393241235182\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Science Computer Review","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/08944393241235182","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

移动体验取样(MES)是了解青少年数字媒体使用情况及其影响的一种很有前途的工具。遗憾的是,这种方法存在大量数据缺失的问题。根据数据是随机缺失还是非随机缺失,缺失数据会严重影响研究结果的有效性。因此,我们在一项关于数字媒体的使用对青少年幸福感和学习成绩的影响的多层次调查研究(N = 347)中调查了未回应的预测因素。多层次二元逻辑回归确定了影响响应几率的重要因素,如下午的哔哔声和在户外。重要的是,学习成绩较差的青少年更有可能错过提示音。由于这种缺失与结果变量有关,因此在分析数据前应采用多重估算等现代缺失数据方法。了解无响应的原因可被视为预防、尽量减少和处理 MES 研究中数据缺失的第一步,最终确保收集到的数据得到充分利用,从而得出准确的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncovering the Missing Pieces: Predictors of Nonresponse in a Mobile Experience Sampling Study on Media Effects Among Youth
Mobile Experience Sampling (MES) is a promising tool for understanding youth digital media use and its effects. Unfortunately, the method suffers from high levels of missing data. Depending on whether the data is randomly or non-randomly missing, it can have severe effects on the validity of findings. For this reason, we investigated predictors of non-response in an MES study on displacement effects of digital media use on adolescents’ well-being and academic performance ( N = 347). Multilevel binary logistic regression identified significant influencing factors of response odds, such as afternoon beeps and being outside. Importantly, adolescents with poorer school grades were more likely to miss beeps. Because this missingness was related to the outcome variable, modern missing data methods such as multiple imputation should be applied before analyzing the data. Understanding the reasons for non-response can be seen as the first step to preventing, minimizing, and handling missing data in MES studies, ultimately ensuring that the collected data is fully utilized to draw accurate conclusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Social Science Computer Review
Social Science Computer Review 社会科学-计算机:跨学科应用
CiteScore
9.00
自引率
4.90%
发文量
95
审稿时长
>12 weeks
期刊介绍: Unique Scope Social Science Computer Review is an interdisciplinary journal covering social science instructional and research applications of computing, as well as societal impacts of informational technology. Topics included: artificial intelligence, business, computational social science theory, computer-assisted survey research, computer-based qualitative analysis, computer simulation, economic modeling, electronic modeling, electronic publishing, geographic information systems, instrumentation and research tools, public administration, social impacts of computing and telecommunications, software evaluation, world-wide web resources for social scientists. Interdisciplinary Nature Because the Uses and impacts of computing are interdisciplinary, so is Social Science Computer Review. The journal is of direct relevance to scholars and scientists in a wide variety of disciplines. In its pages you''ll find work in the following areas: sociology, anthropology, political science, economics, psychology, computer literacy, computer applications, and methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信