{"title":"圆柱锥的刘维尔型定理","authors":"Nick Edelen, Gábor Székelyhidi","doi":"10.1002/cpa.22192","DOIUrl":null,"url":null,"abstract":"<p>Suppose that <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>C</mi>\n <mn>0</mn>\n <mi>n</mi>\n </msubsup>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\mathbf {C}_0^n \\subset \\mathbb {R}^{n+1}$</annotation>\n </semantics></math> is a smooth strictly minimizing and strictly stable minimal hypercone (such as the Simons cone), <span></span><math>\n <semantics>\n <mrow>\n <mi>l</mi>\n <mo>≥</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$l \\ge 0$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> a complete embedded minimal hypersurface of <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>+</mo>\n <mi>l</mi>\n </mrow>\n </msup>\n <annotation>$\\mathbb {R}^{n+1+l}$</annotation>\n </semantics></math> lying to one side of <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>=</mo>\n <msub>\n <mi>C</mi>\n <mn>0</mn>\n </msub>\n <mo>×</mo>\n <msup>\n <mi>R</mi>\n <mi>l</mi>\n </msup>\n </mrow>\n <annotation>$\\mathbf {C}= \\mathbf {C}_0 \\times \\mathbb {R}^l$</annotation>\n </semantics></math>. If the density at infinity of <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> is less than twice the density of <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$\\mathbf {C}$</annotation>\n </semantics></math>, then we show that <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mo>=</mo>\n <mi>H</mi>\n <mrow>\n <mo>(</mo>\n <mi>λ</mi>\n <mo>)</mo>\n </mrow>\n <mo>×</mo>\n <msup>\n <mi>R</mi>\n <mi>l</mi>\n </msup>\n </mrow>\n <annotation>$M = H(\\lambda) \\times \\mathbb {R}^l$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>{</mo>\n <mi>H</mi>\n <mrow>\n <mo>(</mo>\n <mi>λ</mi>\n <mo>)</mo>\n </mrow>\n <mo>}</mo>\n </mrow>\n <mi>λ</mi>\n </msub>\n <annotation>$\\lbrace H(\\lambda)\\rbrace _\\lambda$</annotation>\n </semantics></math> is the Hardt–Simon foliation of <span></span><math>\n <semantics>\n <msub>\n <mi>C</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\mathbf {C}_0$</annotation>\n </semantics></math>. This extends a result of L. Simon, where an additional smallness assumption is required for the normal vector of <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math>.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 8","pages":"3557-3580"},"PeriodicalIF":3.1000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Liouville-type theorem for cylindrical cones\",\"authors\":\"Nick Edelen, Gábor Székelyhidi\",\"doi\":\"10.1002/cpa.22192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Suppose that <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>C</mi>\\n <mn>0</mn>\\n <mi>n</mi>\\n </msubsup>\\n <mo>⊂</mo>\\n <msup>\\n <mi>R</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbf {C}_0^n \\\\subset \\\\mathbb {R}^{n+1}$</annotation>\\n </semantics></math> is a smooth strictly minimizing and strictly stable minimal hypercone (such as the Simons cone), <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>l</mi>\\n <mo>≥</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$l \\\\ge 0$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> a complete embedded minimal hypersurface of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>l</mi>\\n </mrow>\\n </msup>\\n <annotation>$\\\\mathbb {R}^{n+1+l}$</annotation>\\n </semantics></math> lying to one side of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mo>=</mo>\\n <msub>\\n <mi>C</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>×</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>l</mi>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbf {C}= \\\\mathbf {C}_0 \\\\times \\\\mathbb {R}^l$</annotation>\\n </semantics></math>. If the density at infinity of <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> is less than twice the density of <span></span><math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>$\\\\mathbf {C}$</annotation>\\n </semantics></math>, then we show that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n <mo>=</mo>\\n <mi>H</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>λ</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>×</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>l</mi>\\n </msup>\\n </mrow>\\n <annotation>$M = H(\\\\lambda) \\\\times \\\\mathbb {R}^l$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>{</mo>\\n <mi>H</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>λ</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>}</mo>\\n </mrow>\\n <mi>λ</mi>\\n </msub>\\n <annotation>$\\\\lbrace H(\\\\lambda)\\\\rbrace _\\\\lambda$</annotation>\\n </semantics></math> is the Hardt–Simon foliation of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>C</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$\\\\mathbf {C}_0$</annotation>\\n </semantics></math>. This extends a result of L. Simon, where an additional smallness assumption is required for the normal vector of <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"77 8\",\"pages\":\"3557-3580\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22192\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22192","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Suppose that is a smooth strictly minimizing and strictly stable minimal hypercone (such as the Simons cone), , and a complete embedded minimal hypersurface of lying to one side of . If the density at infinity of is less than twice the density of , then we show that , where is the Hardt–Simon foliation of . This extends a result of L. Simon, where an additional smallness assumption is required for the normal vector of .