圆柱锥的刘维尔型定理

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Nick Edelen, Gábor Székelyhidi
{"title":"圆柱锥的刘维尔型定理","authors":"Nick Edelen,&nbsp;Gábor Székelyhidi","doi":"10.1002/cpa.22192","DOIUrl":null,"url":null,"abstract":"<p>Suppose that <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>C</mi>\n <mn>0</mn>\n <mi>n</mi>\n </msubsup>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\mathbf {C}_0^n \\subset \\mathbb {R}^{n+1}$</annotation>\n </semantics></math> is a smooth strictly minimizing and strictly stable minimal hypercone (such as the Simons cone), <span></span><math>\n <semantics>\n <mrow>\n <mi>l</mi>\n <mo>≥</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$l \\ge 0$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> a complete embedded minimal hypersurface of <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>+</mo>\n <mi>l</mi>\n </mrow>\n </msup>\n <annotation>$\\mathbb {R}^{n+1+l}$</annotation>\n </semantics></math> lying to one side of <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>=</mo>\n <msub>\n <mi>C</mi>\n <mn>0</mn>\n </msub>\n <mo>×</mo>\n <msup>\n <mi>R</mi>\n <mi>l</mi>\n </msup>\n </mrow>\n <annotation>$\\mathbf {C}= \\mathbf {C}_0 \\times \\mathbb {R}^l$</annotation>\n </semantics></math>. If the density at infinity of <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> is less than twice the density of <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$\\mathbf {C}$</annotation>\n </semantics></math>, then we show that <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mo>=</mo>\n <mi>H</mi>\n <mrow>\n <mo>(</mo>\n <mi>λ</mi>\n <mo>)</mo>\n </mrow>\n <mo>×</mo>\n <msup>\n <mi>R</mi>\n <mi>l</mi>\n </msup>\n </mrow>\n <annotation>$M = H(\\lambda) \\times \\mathbb {R}^l$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>{</mo>\n <mi>H</mi>\n <mrow>\n <mo>(</mo>\n <mi>λ</mi>\n <mo>)</mo>\n </mrow>\n <mo>}</mo>\n </mrow>\n <mi>λ</mi>\n </msub>\n <annotation>$\\lbrace H(\\lambda)\\rbrace _\\lambda$</annotation>\n </semantics></math> is the Hardt–Simon foliation of <span></span><math>\n <semantics>\n <msub>\n <mi>C</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\mathbf {C}_0$</annotation>\n </semantics></math>. This extends a result of L. Simon, where an additional smallness assumption is required for the normal vector of <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math>.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Liouville-type theorem for cylindrical cones\",\"authors\":\"Nick Edelen,&nbsp;Gábor Székelyhidi\",\"doi\":\"10.1002/cpa.22192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Suppose that <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>C</mi>\\n <mn>0</mn>\\n <mi>n</mi>\\n </msubsup>\\n <mo>⊂</mo>\\n <msup>\\n <mi>R</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbf {C}_0^n \\\\subset \\\\mathbb {R}^{n+1}$</annotation>\\n </semantics></math> is a smooth strictly minimizing and strictly stable minimal hypercone (such as the Simons cone), <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>l</mi>\\n <mo>≥</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$l \\\\ge 0$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> a complete embedded minimal hypersurface of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>l</mi>\\n </mrow>\\n </msup>\\n <annotation>$\\\\mathbb {R}^{n+1+l}$</annotation>\\n </semantics></math> lying to one side of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mo>=</mo>\\n <msub>\\n <mi>C</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>×</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>l</mi>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbf {C}= \\\\mathbf {C}_0 \\\\times \\\\mathbb {R}^l$</annotation>\\n </semantics></math>. If the density at infinity of <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> is less than twice the density of <span></span><math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>$\\\\mathbf {C}$</annotation>\\n </semantics></math>, then we show that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n <mo>=</mo>\\n <mi>H</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>λ</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>×</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>l</mi>\\n </msup>\\n </mrow>\\n <annotation>$M = H(\\\\lambda) \\\\times \\\\mathbb {R}^l$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>{</mo>\\n <mi>H</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>λ</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>}</mo>\\n </mrow>\\n <mi>λ</mi>\\n </msub>\\n <annotation>$\\\\lbrace H(\\\\lambda)\\\\rbrace _\\\\lambda$</annotation>\\n </semantics></math> is the Hardt–Simon foliation of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>C</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$\\\\mathbf {C}_0$</annotation>\\n </semantics></math>. This extends a result of L. Simon, where an additional smallness assumption is required for the normal vector of <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22192\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22192","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

假设 , 是一个光滑的严格最小化和严格稳定的最小超锥(如西蒙斯锥), , 是一个完整的嵌入最小超曲面,位于 。 如果 , 的无穷大处的密度小于 , 的密度的两倍,那么我们证明 , , 其中 , 是 。 这扩展了 L. Simon 的一个结果,在这个结果中,对 , 的法向量需要一个额外的微小性假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Liouville-type theorem for cylindrical cones

Suppose that C 0 n R n + 1 $\mathbf {C}_0^n \subset \mathbb {R}^{n+1}$ is a smooth strictly minimizing and strictly stable minimal hypercone (such as the Simons cone), l 0 $l \ge 0$ , and M $M$ a complete embedded minimal hypersurface of R n + 1 + l $\mathbb {R}^{n+1+l}$ lying to one side of C = C 0 × R l $\mathbf {C}= \mathbf {C}_0 \times \mathbb {R}^l$ . If the density at infinity of M $M$ is less than twice the density of C $\mathbf {C}$ , then we show that M = H ( λ ) × R l $M = H(\lambda) \times \mathbb {R}^l$ , where { H ( λ ) } λ $\lbrace H(\lambda)\rbrace _\lambda$ is the Hardt–Simon foliation of C 0 $\mathbf {C}_0$ . This extends a result of L. Simon, where an additional smallness assumption is required for the normal vector of M $M$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信