圆柱锥的刘维尔型定理

IF 3.1 1区 数学 Q1 MATHEMATICS
Nick Edelen, Gábor Székelyhidi
{"title":"圆柱锥的刘维尔型定理","authors":"Nick Edelen,&nbsp;Gábor Székelyhidi","doi":"10.1002/cpa.22192","DOIUrl":null,"url":null,"abstract":"<p>Suppose that <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>C</mi>\n <mn>0</mn>\n <mi>n</mi>\n </msubsup>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\mathbf {C}_0^n \\subset \\mathbb {R}^{n+1}$</annotation>\n </semantics></math> is a smooth strictly minimizing and strictly stable minimal hypercone (such as the Simons cone), <span></span><math>\n <semantics>\n <mrow>\n <mi>l</mi>\n <mo>≥</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$l \\ge 0$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> a complete embedded minimal hypersurface of <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>+</mo>\n <mi>l</mi>\n </mrow>\n </msup>\n <annotation>$\\mathbb {R}^{n+1+l}$</annotation>\n </semantics></math> lying to one side of <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>=</mo>\n <msub>\n <mi>C</mi>\n <mn>0</mn>\n </msub>\n <mo>×</mo>\n <msup>\n <mi>R</mi>\n <mi>l</mi>\n </msup>\n </mrow>\n <annotation>$\\mathbf {C}= \\mathbf {C}_0 \\times \\mathbb {R}^l$</annotation>\n </semantics></math>. If the density at infinity of <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> is less than twice the density of <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$\\mathbf {C}$</annotation>\n </semantics></math>, then we show that <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mo>=</mo>\n <mi>H</mi>\n <mrow>\n <mo>(</mo>\n <mi>λ</mi>\n <mo>)</mo>\n </mrow>\n <mo>×</mo>\n <msup>\n <mi>R</mi>\n <mi>l</mi>\n </msup>\n </mrow>\n <annotation>$M = H(\\lambda) \\times \\mathbb {R}^l$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>{</mo>\n <mi>H</mi>\n <mrow>\n <mo>(</mo>\n <mi>λ</mi>\n <mo>)</mo>\n </mrow>\n <mo>}</mo>\n </mrow>\n <mi>λ</mi>\n </msub>\n <annotation>$\\lbrace H(\\lambda)\\rbrace _\\lambda$</annotation>\n </semantics></math> is the Hardt–Simon foliation of <span></span><math>\n <semantics>\n <msub>\n <mi>C</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\mathbf {C}_0$</annotation>\n </semantics></math>. This extends a result of L. Simon, where an additional smallness assumption is required for the normal vector of <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math>.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 8","pages":"3557-3580"},"PeriodicalIF":3.1000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Liouville-type theorem for cylindrical cones\",\"authors\":\"Nick Edelen,&nbsp;Gábor Székelyhidi\",\"doi\":\"10.1002/cpa.22192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Suppose that <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>C</mi>\\n <mn>0</mn>\\n <mi>n</mi>\\n </msubsup>\\n <mo>⊂</mo>\\n <msup>\\n <mi>R</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbf {C}_0^n \\\\subset \\\\mathbb {R}^{n+1}$</annotation>\\n </semantics></math> is a smooth strictly minimizing and strictly stable minimal hypercone (such as the Simons cone), <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>l</mi>\\n <mo>≥</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$l \\\\ge 0$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> a complete embedded minimal hypersurface of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>l</mi>\\n </mrow>\\n </msup>\\n <annotation>$\\\\mathbb {R}^{n+1+l}$</annotation>\\n </semantics></math> lying to one side of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mo>=</mo>\\n <msub>\\n <mi>C</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>×</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>l</mi>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbf {C}= \\\\mathbf {C}_0 \\\\times \\\\mathbb {R}^l$</annotation>\\n </semantics></math>. If the density at infinity of <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> is less than twice the density of <span></span><math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>$\\\\mathbf {C}$</annotation>\\n </semantics></math>, then we show that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n <mo>=</mo>\\n <mi>H</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>λ</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>×</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>l</mi>\\n </msup>\\n </mrow>\\n <annotation>$M = H(\\\\lambda) \\\\times \\\\mathbb {R}^l$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>{</mo>\\n <mi>H</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>λ</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>}</mo>\\n </mrow>\\n <mi>λ</mi>\\n </msub>\\n <annotation>$\\\\lbrace H(\\\\lambda)\\\\rbrace _\\\\lambda$</annotation>\\n </semantics></math> is the Hardt–Simon foliation of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>C</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$\\\\mathbf {C}_0$</annotation>\\n </semantics></math>. This extends a result of L. Simon, where an additional smallness assumption is required for the normal vector of <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"77 8\",\"pages\":\"3557-3580\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22192\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22192","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设 , 是一个光滑的严格最小化和严格稳定的最小超锥(如西蒙斯锥), , 是一个完整的嵌入最小超曲面,位于 。 如果 , 的无穷大处的密度小于 , 的密度的两倍,那么我们证明 , , 其中 , 是 。 这扩展了 L. Simon 的一个结果,在这个结果中,对 , 的法向量需要一个额外的微小性假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Liouville-type theorem for cylindrical cones

Suppose that C 0 n R n + 1 $\mathbf {C}_0^n \subset \mathbb {R}^{n+1}$ is a smooth strictly minimizing and strictly stable minimal hypercone (such as the Simons cone), l 0 $l \ge 0$ , and M $M$ a complete embedded minimal hypersurface of R n + 1 + l $\mathbb {R}^{n+1+l}$ lying to one side of C = C 0 × R l $\mathbf {C}= \mathbf {C}_0 \times \mathbb {R}^l$ . If the density at infinity of M $M$ is less than twice the density of C $\mathbf {C}$ , then we show that M = H ( λ ) × R l $M = H(\lambda) \times \mathbb {R}^l$ , where { H ( λ ) } λ $\lbrace H(\lambda)\rbrace _\lambda$ is the Hardt–Simon foliation of C 0 $\mathbf {C}_0$ . This extends a result of L. Simon, where an additional smallness assumption is required for the normal vector of M $M$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信