{"title":"评估带有急转半径的胶带弹簧导向针周围的组织损伤情况","authors":"Omar T. Abdoun;Mark Yim","doi":"10.1109/OJEMB.2024.3355286","DOIUrl":null,"url":null,"abstract":"Steerable needles are a novel technology that offers a wide range of uses in medical diagnostics and therapeutics. Currently, there exist several steerable needle designs in the literature, however, they are limited in their use by the number of possible turns, turn radius, and tissue damage. We introduce a novel design of a tape spring steerable needle, capable of multiple turns, that minimizes tissue damage. In this study, we measure the turning radius of our steerable needle in porcine liver tissue in vitro with ultrasound and estimate tissue damage in gel blocks using image analysis and 3D plaster casting. We were able to demonstrate our steerable needle's ability to steer through biological tissue, as well as introduce a novel method for estimating tissue damage. Our findings show that our needle design showed lower damage compared to similar designs in literature, as well as tissue stiffness being a protective factor against tissue damage.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10401958","citationCount":"0","resultStr":"{\"title\":\"Assessing Tissue Damage Around a Tape Spring Steerable Needle With Sharp Turn Radii\",\"authors\":\"Omar T. Abdoun;Mark Yim\",\"doi\":\"10.1109/OJEMB.2024.3355286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Steerable needles are a novel technology that offers a wide range of uses in medical diagnostics and therapeutics. Currently, there exist several steerable needle designs in the literature, however, they are limited in their use by the number of possible turns, turn radius, and tissue damage. We introduce a novel design of a tape spring steerable needle, capable of multiple turns, that minimizes tissue damage. In this study, we measure the turning radius of our steerable needle in porcine liver tissue in vitro with ultrasound and estimate tissue damage in gel blocks using image analysis and 3D plaster casting. We were able to demonstrate our steerable needle's ability to steer through biological tissue, as well as introduce a novel method for estimating tissue damage. Our findings show that our needle design showed lower damage compared to similar designs in literature, as well as tissue stiffness being a protective factor against tissue damage.\",\"PeriodicalId\":33825,\"journal\":{\"name\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10401958\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10401958/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10401958/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Assessing Tissue Damage Around a Tape Spring Steerable Needle With Sharp Turn Radii
Steerable needles are a novel technology that offers a wide range of uses in medical diagnostics and therapeutics. Currently, there exist several steerable needle designs in the literature, however, they are limited in their use by the number of possible turns, turn radius, and tissue damage. We introduce a novel design of a tape spring steerable needle, capable of multiple turns, that minimizes tissue damage. In this study, we measure the turning radius of our steerable needle in porcine liver tissue in vitro with ultrasound and estimate tissue damage in gel blocks using image analysis and 3D plaster casting. We were able to demonstrate our steerable needle's ability to steer through biological tissue, as well as introduce a novel method for estimating tissue damage. Our findings show that our needle design showed lower damage compared to similar designs in literature, as well as tissue stiffness being a protective factor against tissue damage.
期刊介绍:
The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.